Reg. No. :

Question Paper Code : X 10356

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020/ APRIL/MAY 2021 Third/Fourth Semester Electronics and Communication Engineering EC 8392 – DIGITAL ELECTRONICS (Common to Biomedical Engineering/B.E. Computer and Communication Engineering/ Mechatronics Engineering/Medical Electronics/B.E. Robotics and Automation) (Regulations 2017)

Time : Three Hours

Maximum : 100 Marks

Answer ALL questions

PART - A

(10×2=20 Marks)

- 1. Convert $[643]_{10}$ into its Excess 3-code.
- 2. Express the function Y = A + BC in canonical POS.
- 3. Write notes on full adder.
- 4. Define binary decoder.
- 5. Show how S-R flip flop is converted into D-flip flop.
- 6. What is shift register ?
- 7. Draw a block diagram of asynchronous sequential circuits.
- 8. Outline hazard and static 1 hazard.
- 9. Interpret about programmable logic array and infer how it differs from ROM.
- 10. What do you mean by propagation delay and noise margin ?

(5×13=65 Marks)

- 11. a) i) Find the MSOP representation for F(A, B, C, D, E) = m(1, 5, 7, 13, 14, 15, 17, 18, 21, 22, 25, 29) + d(6, 9, 19, 23, 30) using K-Map method. Draw the circuit of the minimal expression using only NAND gates. (8)
 - ii) Show that if all the gate in a two level OR-AND gate network are replaced by NOR gate, the output function does not change. (5)

(OR)

b) What are the advantages of using tabulation method ? Determine the Minimal Sum Of Products for the Boolean expression $F = \sum(1, 2, 3, 7, 8, 9, 10, 11, 14, 15)$ using Tabulation method. (13)

X 10356	
12. a) i) Design and explain the 1 to 8 Demultiplexer.	(8)
ii) Interpret Octal to Binary Encoder in brief.	(5)
(OR)	
b) Illustrate how two 4-bit numbers are compared using magnitude com	parator. (13)
13. a) i) Summarize the operation of JK flip-flop with neat diagram.	(7)
ii) Explain the operation of Master slave flip flop and show how the rac condition is eliminated.	e around (6)
(OR)	
b) Explain the operation of synchronous three bit counter.	(13)
14. a) Design an asynchronous sequential circuit that has two inputs X_2 and one output Z. When $X_1 = 0$, the output Z is 0. The first change in X_2 the while X_1 is 1 will cause output Z to be 1. The output Z will remain 1 returns to 0.	d X ₁ and at occurs until X ₁ (13)
(OR)	
b) Critically examine cycles and races in asynchronous sequential circui	ts. (13)
15. a) Draw the basic circuit of a ROM cell and describe its working principle architecture.	e with its (13)
(OR)	
b) Present the basic concepts of PLA and its applications.	(13)
$PART - C \qquad (1 \times 13)$	5=15 Marks)
16. a) Analyze the working principle and characteristics of CMOS (i)(ii) NAND gate (iii) NOR gate with circuit diagram.	Inverter (15)
(OR)	
b) Explain the working principle of (i) TTL NAND gate (ii) ECL OR/NOR g circuit diagram.	gate with (15)