

Question Paper Code : X10364

B.E./B.Tech. DEGREE EXAMINATIONS NOVEMBER / DECEMBER 2020 AND APRIL / MAY 2021

Third/Fourth Semester

Electronics and Communication Engineering

EC8491 – COMMUNICATION THEORY

(Common to: Computer and Communication Engineering, Geoinformatics Engineering)

(Regulations 2017)

Time: 3 Hours

Answer ALL Questions

Max. Marks 100

PART- A (10 x 2 = 20 Marks)

- 1. A carrier wave of frequency $10MH_Z$ and peak value 10V is amplitude modulated by a 5 kH_Z sine wave of amplitude 6V. Determine the modulation index the amplitude spectrum.
- 2. What are the merits of SSB modulation?
- 3. A 25 MH_Z carrier is modulated by a 400 H_Z sine wave. If the carrier voltage is 4 V and the maximum deviation is 10 KH_Z , write the equation of this modulated wave for (i) FM and (ii) PM.
- 4. A 500H_Z modulating voltage fed into a PM generator produces a frequency deviation of 2.25 KH_Z. What is the modulation index? If the amplitude of the modulating voltage is kept constant, but its frequency is raised to 6 KH_Z, what is new deviation?
- 5. Define a random variable. Specify the sample space and the random variable for a coin tossing experiment.
- 6. When a random process is called deterministic?
- 7. What is white noise? Give its characteristics.
- 8. Define noise equivalent bandwidth.
- 9. For a PCM system with maximum audio input frequency of 4Kh_Z, determine the minimum sample rate and alias frequency produced if a 5 Kh_Z audio were allowed to enter the sampling circuit.
- 10. State low pass sampling Theorem.

PART- B (5 x 13 = 65 Marks)

11. a) (i) What is the need for modulation? Derive the expression for amplitude modulation and mention its merits and demerits. (ii) The output voltage of а transmitter is given by $500(1+0.4\sin 3140t)\cos 6.28\times 10^7 t$. This voltage is fed to a load of 6000 hms. Determine 1) Carrier frequency 2) Modulating frequency 3) Carrier power 4) Total transmitted power.

(OR)

- b) Describe the working of superhetrodyne receiver with the help of block diagram. Discuss how image signal is formed and mention how it can be reduced.
- **12.** a) With block diagram explain the Armstrong FM Transmitter and discuss its advantages over direct FM transmitters.

(**OR**)

- b) (i) Differentiate between wideband FM AND Narrowband.(ii) With a neat sketch, explain any one method of direct FM generation.
- 13. a) (i)State the properties of a Gaussian process. (ii)For the sine wave process $X(t) = Y \cos \omega t$, $-\infty < t < \infty$ where $\omega =$ constant, the amplitude Y is a random variable with uniform distribution in the interval 0 and 1. Check whether the process is stationary or not.

(OR)

- b) (i)State any four properties of power spectral density.
 (ii) The ACF of the random telegraph signal process is given by R(t)=e-2λt. Determine the power density spectrum of the random telegraph signal.
- 14. a) With a neat sketch, explain the pre emphasis and de emphasis of FM. **(OR)**
 - b) What is narrowband noise? Discuss the properties of the quadrature components of a narrowband noise.
- **15.** a) What is quantization? Explain in detail about the uniform and non-uniform quantization.

(OR)

b) Draw the block diagram of the Transmitter and Receiver of a pulse code modulator and explain the performance.

PART- C (1 x 15 = 15 Marks)

16. a) Derive the expression for canonical form representation of an SSB-SC wave and hence deduce the block diagram of Phase discrimination method for processing sidebands.

(OR)

b) With necessary derivation, circuit diagram and phasor diagram explain the foster seeley FM discriminator.