Reg. No. :

Question Paper Code : 40793

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2021.

Fifth Semester

Computer Science and Engineering

MA $8551 - \mathrm{ALGEBRA}$ AND NUMBER THEORY

(Common to Computer and Communication Engineering/Information Technology)

(Regulations 2017)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Consider a set G together with a well defined binary operation * on it. Let $e_1, e_2 \in G, * >$ such that $e_1 = a = a * e_1 = a$ and $e_2 = a = a * e_2 = a$ for all $a \in G$. What is the relation between e_1 and e_2 ? Justify your answer.
- 2. Prove or disprove: Every Field is an Integral domain.
- 3. Suppose p(x) and q(x) are two polynomials each of degree *m* and *n* respectively, over the ring of integer moduto 8. The degree of the polynomial p(x)q(x) is m + n. Comment on this statement.
- 4. Consider the polynomial $p(x) = x^2 + 2x + 6$ in the field $Z_7[x]$. What are the factors of p(x)?
- 5. Let a, b and c be any integers. If $a \mid b$ and $b \mid c$, then prove that $a \mid c$.
- 6. Find the *GCD*(161, 28) using Euclidean algorithm.
- 7. Is it possible to find the remainder when 1! + 2! + 3! + 100! is divided by 15? Justify your answer.
- 8. Compute the value of x such that $2^8 \equiv x \pmod{7}$.
- 9. Compute the value of $\tau(18)$ and $\sigma(28)$.
- 10. If ϕ denotes Euler's totient function, then compute value of $\phi(\phi(38))$.

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) State and prove Lagrange's theorem.

Or

- (b) If f: (R, +, ·) → (S,⊕, ⊙) is a ring homomorphism from R to S then prove the following:
 - (i) If R is a commutative ring then S is a commutative ring. (8)
 - (ii) If *I* is an ideal of *R* then f(I) is an ideal of *S*. (8)
- 12. (a) Let $f(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n$ be a polynomial of *degree* n with integer coefficients, and let p be a prime number. Suppose that p does not divide a_n , p divides $a_0, a_1, a_2 ... a_{n-1}$, and p^2 does not divide a_0 . Then prove that the polynomial f is irreducible over the field Q of rational numbers. Also verify whether or not the polynomial $3x^5 + 15x^4 20x^3 + 10x + 20$ is reducible over Q. (16)

Or

- (b) Suppose $f(x) = x^2 + 1$ and $g(x) = x^4 + x^3 + x^2 + x + 1$ are the two polynomials over the field $Z_2[x]$ then
 - (i) Find q(x) and r(x) such than g(x) = q(x)f(x) + r(x) where r(x) = 0or degree of r(x) < degree of f(x). (12)
 - (ii) Compute f(x)g(x). (4)
- 13. (a) Let *a* be any integer and *b* a positive integer. Then prove that there exist unique integers *q* and *r* such that a = bq + r where $0 \le r \le b$. (16)

Or

(b)	State and prove fundamental theorem of arithmetic.	(16)
-----	--	------

- 14. (a) (i) Solve the linear Diophantine equation 1076x + 2076y = 3076. (8)
 - (ii) Find all the solutions of $2076x = 3076 \pmod{1076}$. (8)

Or

- (b) (i) Compute the remainder when 3^{247} is divided by 17 (8)
 - (ii) Find an integer that has a remainder of 3 when divided by 7 and 13, but is divisible by 12.

(16)

- 15. (a) (i) Prove that "A positive integer a is self invertible modulo p if and only if $a \equiv \pm 1 \pmod{p}$ ". (8)
 - (ii) State and prove Wilson's Theorem. (8)

 \mathbf{Or}

- (b) (i) If p is a prime number and a is any integer such that $p \nmid a$ then prove that $a^{p-1} \equiv 1 \pmod{p}$. (8)
 - (ii) State and prove Euler's Theorem. (8)