			****.		
				all was gift	-
	•			~	

		T		1	1 1	- 1	1 1	
T 3.T	l I		1 1	1	1 1	- 1	1 1	
Reg. No. :	l I		1 1	- 1	1 I	- 1	1 1	
ites. Hor.	l I	1 1	1 1		i			

Question Paper Code: 30123

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2023.

Fourth Semester

Computer Science and Engineering

CS 3452 — THEORY OF COMPUTATION

(Common to Information Technology)

(Regulations 2021)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- Differentiate NFA and DFA.
- 2. Convert the given NFA to an DFA.

- Prove that reversal of any regular language is also regular.
- 4. Write a regular expression that recognizes the set of all strings $(0+1)^*$ that do not contain the substrings 00 and 11 over the alphabet $\Sigma = \{0, 1\}$.
- 5. State the Pumping Lemma for Context Free Languages.
- 6. What is a Deterministic Push Down Automata?
- 7. Give the instantaneous description of a TM.

8.	W)	What do you mean by useless symbol? Explain with an example.							
9.	W	When is a language L recursively enumerable?							
10.	Wl	at are tractable problems?							
			PART B — $(5 \times 13 = 65 \text{ marks})$						
11.	(a)	Construct NFA accepting the set of strings $\Sigma = \{0, 1\}$ such that separated by a string whose length is 4i, for some i>=0.							
			\mathbf{Or}						
	(b)	(b) Prove that for every L recognized by an NFA, there exists an equiv. DFA accepting the same language L.							
12.	(a)	Kleene closure, complement.							
	<i>a</i> >	70	Or						
	(b)	reg	ve that any language accepted by a DFA can be represent ular expression and also construct a finite automata for the ression 10+(0+11)0*1.	ited by a e regular (13)					
13.	(a)	star	t $G = (V, E, R, S)$ be the CFG, where $V = \{A, B, S\}$, $E = \{a, b\}$, S is the art variable and R consists of the rules						
			> aB bA > a aS BAA						
			b bS ABB						
		(i)	Prove that ababba $\in L(G)$	(7)					
		(ii)	Prove that L(G) is the set of all non-empty strings we alphabet {a, b} such that the number a's in w is equal to the of b's in w.	(7) over the number (6)					
			Or	(-)					
	(b)	(i)	Design a PDA that will accepts strings $(a+b)^*$ in whomumber of a's is greater than the number of b's given the a $\Sigma = \{a, b\}$.	nich the alphabet (7)					
		(ii)	Convert the above PDA to its equivalent CFG.	(6)					
14.	(a)	(i)	Convert the following grammar to CNF	(7)					
			$S \to ASB \mid \varepsilon$	` '					
			$A \rightarrow aAS \mid a$						
			$B \rightarrow SbS A bb$						
		(ii)	Design a Turing machine to compute proper subtraction. Or	(6)					
			2	30123					

	(b)	(i)	Convert the following grammar to GNF	(7)					
			$A_1 \to A_3 A_2 \mid A_2 A_3$						
			$A_2 \rightarrow A_3 A_3 A_2 A_2 a$						
			$A_3 \rightarrow A_2 A_2 \mid b$						
		(ii)	Design a Turing machine that takes a binary number as input increments the number by 1.	and (6)					
15.	(a)	(a) (i) Prove that Post Correspondence Problem is undecidable.							
		(ii)	Write short notes on P and NP completeness.	(7) (6)					
			Or						
	(b)	(i)	Explain about Universal Turing Machine.	(7)					
		(ii)	Discuss Travelling Salesman Problem in terms P and NP completeness.	of (6)					
			PART C — $(1 \times 15 = 15 \text{ marks})$						
16.	(a)	Con	sider the NFA $N = (Q, \Sigma, \delta, q, F)$, where $Q = \{1, 2, 3\}, \Sigma = \{a, a, b, a\}$	h}					
			1, $F = \{2\}$, and δ is given by the following table:	Ο,,					
			a b c						
			1 {3} φ {2}						
			2 {1} φ φ						
			3 {2} {2, 3} ¢						
		Con	vert the NFA (N) into DFA (M) that accepts the same language. (15)					
			\mathbf{Or}						
	(b)	(i)	Write the regular expression for the set of all strings of 0's and	1's (5)					
		(ii)	Design a Turing machine to recognize the langua						