						,	
		,					
						-	

Reg. No. :				

Question Paper Code: 30147

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2023.

Third Semester

Electrical and Electronics Engineering

EE 3301 – ELECTROMAGNETIC FIELDS

(Regulations 2021)


Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. State Divergence Theorem.
- 2. State Coulombs law.
- 3. Define potential difference with equation.
- 4. Formulate the total equivalent capacitance of two capacitor connected in series.

- 5. List the difference between Scalar and Vector Magnetic Potential.
- 6. State Ampere's circuital law.
- 7. Write the faraday's law equation for a moving charge in a constant magnetic field.
- 8. Write down the expression for electromotive force induced in the moving loop in static field B.

- 9. List the properties of uniform plane wave.
- Outline the term 'skin depth'.

PART B —
$$(5 \times 13 = 65 \text{ marks})$$

11. (a) Calculate the electric field due to infinite line charge with charge density ρL .

Or

(b) Derive the potential due to

(i) Line charge (4)

(ii) Surface charge (4)

(iii) Volume charge (5)

- 12. (a) (i) Derive the boundary conditions for electric fields, between conductor and free space. (8)
 - (ii) Applying stokes theorem, derive continuity equation of current. (5)

Or

- (b) (i) Derive the capacitance of a coaxial cable. (7)
 - (ii) Derive the capacitance of a spherical capacitor. (6)
- 13. (a) Find the total power passing through a circular disk of radius 5 cm in free space, given $\vec{H} = 0.2 \ e^{-j\beta x} \vec{a}_z$.

Or

- (b) Given electric field intensity in free space, $\vec{E} = \frac{50}{\rho} \cos{(10^8 t 10z)} \vec{a}_{\rho} V/m$. Find Magnetic flux density.
- 14. (a) Derive the Maxwell's equations both in integral and point forms.

Or

- (b) Derive the displacement current from circuital analysis and from Ampere circuital law.
- 15. (a) Illustrate and derive poynting vector in integral and differential form.

Or

(b) Illustrate the propagation of uniform plane waves in two different medias with $(\varepsilon_1, \mu_1, \sigma_1)$ and $(\varepsilon_2, \mu_2, \sigma_2)$. Derive reflection coefficient and transmission coefficient of the wave, from the field components. (7+6)

PART C — $(1 \times 15 = 15 \text{ marks})$

16. (a) In a material, for which $\sigma = 5.0 \frac{s}{m}$ and $\varepsilon_r = 1$ and $\vec{E} = 250 \sin 10^{10} t (V/m)$.

Find the conduction and displacement current densities, and the frequency at which both have equal magnitudes. (5+5+5)

Or

(b) If
$$V = \left[2x^2y + 20z - \frac{4}{x^2 + y^2}\right]$$
 volts.

Evaluate \vec{E} and \vec{D} at point P (6,-2.5,3) (8+7)