•	Reg. No. :
•	
111	Question Paper Code: 30148

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2023.

Third Semester

Electrical and Electronics Engineering

EE 3302 — DIGITAL LOGIC CIRCUITS

(Regulations 2021)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. What is the best example of digital system?
- 2. Define Nibble and Byte.
- 3. Define Boolean algebra and Boolean Expression.
- 4. State De Morgan's theorem.
- 5. Difference between Combinational & Sequential Circuits.
- 6. What are the classifications of sequential circuits?
- 7. How can the hazards in combinational circuit be removed?
- 3. What is static 1 hazard?
- What are the types of gate arrays in ASIC?
- 10. Give the different bitwise operators.

PART B —
$$(5 \times 13 = 65 \text{ marks})$$

- 11. (a) (i) Draw the circuit diagram and explain the working of TTL inverter with tristate out
 - (ii) Explain the concept and implementation of ECL logic family.

Or

- (b) (i) Explain the operation of TTL NAND gate with a neat circuit diagram. (8)
 - (ii) Draw the circuit of CMOS NOR gate and explain its operation. Mention any two points about the advantages of CMOS over the other digital logic families. (5)
- 12. (a) Obtain the minimum SOP using K-map.

 $F=M_0+M_2+M_4+M_8+M_9+M_{10}+M_{11}+M_{12}+M_{13}$

Or

- (b) Using 8:1 multiplexer, realize the Boolean function T=f(w,x,y,z)=m(0,1,2,4,5,7,8,9,12,13)
- 13. (a) A sequential circuit has four flip flops ABCD and an input x is described by the following state equations.

$$A(t+1) = (CD'+C'D)x + (CD + (CD)')x'$$

$$B(t+1) = A$$

$$C\left(t+1\right)=B$$

$$D(t+1) = C$$

Obtain the sequence of states when x = 1 starting from state ABCD = 0001 Obtain the sequence of states when x = 10 starting from state ABCD = 0000

Or

(b) Design a synchronous sequential circuit using JK for the given state diagram.

- 14. (a) Develop the state diagram and primitive flow table for a logic system that has two inputs S and R and a single output Q. The device is to be an edge triggered SR flip-flop but without a clock. The device changes state on the rising edges of the two inputs. Static input values are not to have any effect in changing the Q output.
 - (b) Design an asynchronous sequential circuit that has two inputs X_2 and X_1 and one output Z. The output is to remain a 0 as long as X_1 is a 0. The first change in X_2 that occurs while X_1 is a 1 will cause a Z to be a 1. Z is to remain a 1 until X_1 returns to 0. Construct a state diagram and flow table. Determine the output equations.

5. (a) Write a VHDL module that implements a full adder using an array of bit-vectors to represent the truth table.

Or

- (b) (i) Write HDL behavioral description of JK flipflop using if- else statement based on value of present state. (8)
 - (ii) Draw the logic diagram for the following module. (5)

module seqcrt (A,B,C,Q,CLK);

input A,B,C,CLK;

output Q: reg Q,E;

always @ (Posedge CLK) begin E<= A&B;

 $Q \le E / C$;

end end module

PART C —
$$(1 \times 15 = 15 \text{ marks})$$

16. (a) An asynchronous sequential circuit has two internal states and one output. The excitation and output functions describing the circuit are

$$Y_1 = X_1 + X_1 Y_2' + X_2 Y_1 Y_2 = X_2 + X_1 Y_1' Y_2 + X_1 Y_1, Z = X_2 + Y_1$$

- (i) Draw the logic diagram of the circuit. (5)
- (ii) Derive the transition table and output map. (5)
- (iii) Obtain a flow table for the circuit. (5)

Or

b) Design an asynchronous binary toggle circuit that changes state with each rising edge of clock input. Assume the initial output as zero.