		 - ·	ta ka Mirro kasa sa	elisele egib	
		N :			
		- 1 - 1			
			* ***		
,	,		the second second		

Reg. No. :							
	 	E	L		 		i

Question Paper Code: 50430

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2023.

Fifth Semester

Computer Science and Engineering

CS 8501 - THEORY OF COMPUTATION

(Common to: Computer Science and Business Systems)

(Regulations 2017)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- State the principal of mathematical induction.
- Compare and contrast NFA and DFA.
- State: Pumping lemma for regular languages.
- Consider the following languages. $L1 = \{ab, abb, abbb, ...\}$ and $L2 = \Phi$ (empty language). Identify the list of strings that are part of the language created by L1.L2∩L1*.
- Write CFG to generate odd length palindromes using input alphabet {0, 1}.
- Consider the following Context Free Grammar, G:

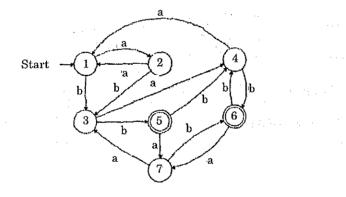
$$A \rightarrow A@A \mid A \& A \mid \sim A$$

 $A \rightarrow i \mid (A)$

Check whether the grammar is ambiguous or not using derivation.

- State: Pumping lemma for CFL.
- Define: Turing machine. 8.
- Define Undecidable languages.
- Write the significance of NP problems with an example.

PART B —
$$(5 \times 13 = 65 \text{ marks})$$


11. (a) Design an ε-NFA (Nondeterministic finite automaton) to recognize the language L, containing only binary strings of non-zero length whose bits sum to a multiple of 5. Convert ε-NFA into an equivalent deterministic finite automaton. Illustrate the computation of your model on any sample input.

Or

- (b) Draw a Deterministic Finite Automata recognizing (DFA) the language corresponding to the regular expression (ab + bc * a *)*. Test your DFA using any two strings of the language.
- 12. (a) Find a Deterministic Finite Automata recognizing the language corresponding to the regular expression (0*10+1*0)(01)*.

Or

(b) Minimize the given automata, G.

13. (a) Design a pushdown automata to recognize the language, $L = \left\{ a^n b^p c^p d^{(n/2)} \mid p,n>0 \right\}.$ Justify your answer.

Or

2

(b) Design a Context Free Grammar to accept the language,

$$L = \left\{ \begin{array}{c} W \mid W \text{ is of the form } \alpha^m b^n c^{n|1} d^{m|2} \mid \\ n.m > 0 \end{array} \right\}$$

Test your design using three sample strings.

 $S \rightarrow AaA$

A → aaBa | CDA | CD

 $B \rightarrow bB$

 $C \rightarrow Ca \mid D$

D → bD |€

Or

b) Design a Turing machine to perform the following function,
$$f(x) = \{2(x+2), x > 0\}$$
. Justify your design.

Or

(b) State whether the instances of the Post Correspondence Problem (PCP) have a solution. The following are the instances with $\sum = \{0,1\}$.

Index	List A	List B
1	10	01
2	110	011
3	110	01
4	000	00

10

In case the PCP has a solution, describe the post-correspondence solution with justification.

010

PART C —
$$(1 \times 15 = 15 \text{ marks})$$

16. (a) Design a pushdown automata to recognize the language, $L = \left\{ a^{2n} b^p c^{2n} d^{2p} \mid p, n > 0 \right\}.$ Justify your answer.

Or

3

(b) Design a Turing Machine to compute the function,

$$f(x,y) = \begin{cases} x\%y, & \text{if } x \text{ is even} \\ 0, & \text{otherwise} \end{cases}$$