				·		
	•					
		-				
			S			
				·		
		•				
						•

	 1					
Reg. No.:						

Question Paper Code: 50498

B.E./B.Tech DEGREE EXAMINATIONS, APRIL/MAY 2023.

Sixth Semester

Electronics and Communication Engineering

EC 8651 — TRANSMISSION LINES AND RF SYSTEMS

(Common to: Electronics and Telecommunication Engineering)

(Regulations 2017)

Time: Three hours

Maximum: 100 marks

$\label{eq:ALL questions} Answer\ ALL\ questions.$

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- Define Characteristic Impedance.
- 2. What is distortion-less line? Give the condition for distortion-less transmission line.
- 3. Give the relationship between standing wave ratio and reflection coefficient?
- 4. Find the input impedance of an open circuited line.
- 5. Mention the advantages of double stub matching.
- 6. A quarter wave transformer is used to match a 10Ω load to a 50Ω transmission line at 2 GHz. Find the characteristic impedance of a quarter wave transformer.
- 7. Why TEM waves are not possible in rectangular waveguide?
- 8. Consider an air-filled rectangular waveguide with a cross section of 5cm \times 3cm. Find the cutoff frequency of TE₂₁ mode.
- 9. State the importance of Low noise amplifier in RF systems.
- 10. Distinguish between oscillator and Mixer.

PART B — $(5 \times 13 = 65 \text{ marks})$

11. (a) Obtain the general transmission line equation for the voltage and current at any point on a transmission line.

Or

- (b) (i) What is a loading? Specify the types of loading in transmission lines. (7)
 - (ii) Briefly explain about reflection factor and reflection loss. (6)
- 12. (a) (i) Examine the voltage and currents at any point on the dissipation less line. (6)
 - (ii) Obtain the variation of input impedance along open and short circuited lines with relevant graphs. (7)

On

- (b) Explain in detail about the wavelength and VSWR measurement of the transmission line.
- 13. (a) A load of 40+j70 Ω is connected to a 100 Ω lossless transmission line of length 0.3 λ . Find the following parameters using smith chart.
 - (i) Reflection Coefficient at the source and load.
 - (ii) Standing wave ratio.
 - (iii) Input impedance.

Or

- (b) Describe the single stub and double stub impedance matching procedure with appropriate transmission line parameters.
- 14. (a) Derive the Field components for Transverse Electric (TE) Mode of propagation in a parallel Plane wave guide.

Or

- (b) In a rectangular wave guide find the transverse field components for Transverse Magnetic (TM) Model of propagation.
- 15. (a) Write short notes on the following.
 - (i) Power amplifiers and power gain relations. (8)
 - (ii) High Electron Mobility Transistor. (5)

Or

- (b) (i) Examine the Linearity, conversion gain, and isolation parameters of an RF mixer. (7)
 - (ii) Explain the basic RF design concepts of Voltage controlled oscillator. (6)

PART C — $(1 \times 15 = 15 \text{ marks})$

- 16. (a) An antenna with an impedance of 40+j30 Ω is to be matched to a 100 Ω lossless line with a shorted stub. Using smith chart find all possible solutions to determine.
 - (i) The distance between the stub and antenna
 - (ii) The stub length

Or

(b) An air-filled rectangular Waveguide with dimensions 3 cm × 5 cm allows 10 GHz signal to propagate through it. Calculate the cut-off frequency, cut-off wavelength, guide wavelength and the characteristics, impedance of the wave for the TE₁₀ mode of propagation.