Reg. No.:					

Question Paper Code: 50519

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2023.

Seventh/Eighth Semester

Electrical and Electronics Engineering

EE 8015 – ELECTRIC ENERGY GENERATION, UTILIZATION AND CONSERVATION

(Regulations 2017)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A - (10 \times 2 = 20 marks)

- 1. Define Luminous Efficacy.
- 2. What is the CRI level required for kitchen and bathroom?
- Name any two eco-friendly refrigerants.
- 4. Define efficiency evaluation factor.
- 5. List the properties of heating element materials.
- 6. List the various types of resistance welding.
- 7. What are the different types of traction systems?
- 8. Name the traction motors used in Indian railways.
- 9. Give any four examples of nonlinear loads.
- 10. Define voltage swell.

PART B — $(5 \times 13 = 65 \text{ marks})$

11. (a) Compare the luminous performance characteristics of GLS, Halogen lamp, Mercury vapour lamp, Sodium vapour lamp, CFL and LED lamps.

Or

(b) Design a lighting scheme for $100 \, \text{m} \times 40 \, \text{m}$ size industry to compete the properties of good lighting scheme. Draw the necessary sketch. (13)

			·
•			

12.	(a)	Explain the various types of air-conditioning system and their applications. (13)
		Or
	· (b)	Calculate the annual energy saving and simple payback period by replacing the existing standard motor with premium efficiency motor. The data for the above application is as follow: (13) Capacity of Existing 20HP
		• Proposed Capacity – 20HP
		· Operating Hours per year - 7,200 Hours
		· Load factor – 80%
		· Cost per unit of Energy – Rs.8.50 per kWh
		• Existing standard motor efficiency - 85%
		• Proposed Premium motor efficiency – 92%
		· Cost for Premium Efficiency motor – Rs.60,000/-
13.	(a)	With neat diagram explain the working of Ajax-Wyatt induction furnace. (13)
		, Or
	(b)	Express the process of dielectric heating and derive the expression for power consumption. (13)
14.	(a)	With the help of trapezoidal speed-time curve derive an expression for the maximum speed. (13)
	(b)	Derive an expression for the tractive effort for propelling a train on a gradient starting from rest. (13)
15.	(a)	(i) An industrial consumer has a maximum demand of 120 kVA and maintains a load factor of 80%. The tariff in force is Rs. 350 per kVA of maximum demand plus Rs. 8 per unit. Calculate the total energy consumed per annum and the annual bill. Assume power factor = 1.
		(ii) A shopping mall has the following daily load cycle: (6)
		Time(Hours) 0-6 6-10 10-12 12-16 16-20 20-24 Load(kW) 20 25 30 25 35 20
		Draw the load curve and calculate:
		(1) Maximum demand
		(2) Units generated per day
		(3) Average load
		5
		(4) Load factor Or
	(b)	Explain the working principle of Online and Offline UPS with neat diagrams. (13)

PART C - $(1 \times 15 = 15 \text{ marks})$

- 16. (a) (i) An illumination of 100 Lux is to be provided in a factory hall 40m × 10m and efficiency of lamp is 14 Lumens/Watt. Depreciation factor is 0.8 and utilization factor is 0.4. Calculate the number of lamps and rating and their position when trusses are provided at mutual distance of 5m.
 - (ii) A 22 kW, single phase 220 V resistance oven employs circular Nichrome wire for its heating element. The wire temperature is not to exceed 1230°C and the temperature of the charge is 500°C. Calculate the size and length of the wire required. Assume radiating efficiency (K) is 0.6, emissivity (ε) is 0.9 and specific resistance of the wire (ρ) is 101 × 10⁻⁶ cm.

Or

- (b) (i) A lamp giving 300 CP in all directions below the horizontal is suspended 2 m above the centre of a square working table of 1 m side 1 in a hosiery industry. Calculate the maximum and minimum illumination on the surface of the table.
 - (ii) A train has schedule speed 60 km/hr. The distance between the stations is 6 km. The values of acceleration and retardation are 2 km/hr/sec and 3 km/hr/sec. Calculate the crest speed of the train by assuming trapezoidal speed-time curve. The duration of stop is 60 seconds.