| Reg. No. : | |----------------------------| | Question Paper Code: 50839 | # B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2023. #### Fifth Semester ## Computer Science and Engineering ## MA 8551 — ALGEBRA AND NUMBER THEORY (Common to : Computer and Communication Engineering/Information Technology) (Regulations 2017) Time: Three hours Maximum: 100 marks Answer ALL questions. PART A — $$(10 \times 2 = 20 \text{ marks})$$ - 1. Give an example for a finite abelian group. - 2. Find the inverse of 4 under the binary operation * defined in Z by a*b=a+b-2. - What are the characteristics of the rings (Z,+,.) and (Q,+,.)? - 4. Give an example for an irreducible and reducible polynomial in $Z_2[x]$. - 5. Find the number of positive integer's ≤ 1576 and not divisible by 11. - 6. Obtain the gcd of (15, 28, 50). - 7. Determine whether the LDE 5x + 20y + 30z = 44 is solvable. - 8. What is the remainder when 3^{31} is divided by 7. - 9. State Wilson's theorem. - 10. Compute $\phi(n)$ for n = 146. ### PART B - (5 × 16 = 80 marks) | 11. | . (a) |) (i) | Determine whether (Z, \oplus, \odot) is a ring with the binary open $x \oplus y = x + y - 7$, $x \odot y = x + y - 3xy$ for all $x, y \in Z$. | ration
(8) | |-----|-------|-------|--|---------------| | | | (ii) | Prove that Z_n is a field if and only if n is a prime. | (8) | | | | | Or | | | | (b) | (i) | Prove that commutative properties is invariant unhomomorphism. | under
(8) | | | | (ii) | Find $[777]^{-1}$ in Z_{1009} . | (8) | | 12. | (a) | (i) | If R is a ring under usual addition and multiplication, show $(R[x],+,x)$ is a ring of polynomials over R . | that
(8) | | | | (ii) | Find all the roots of $f(x) = x^2 + 4x$ in $Z_{12}[x]$. | (8) | | | | | Or Same | | | | (b) | (i) | If $f(x) \in F[x]$ has degree $n \ge 1$, then prove that $f(x)$ has atmorpoots in F. | st n (8) | | | | (ii) | If $f(x) = 3x^5 - 8x^4 + x^3 - x^2 + 4x - 7$, $g(x) = x + 9$
$f(x)$, $g(x) \in Z_{11}[x]$, find the remainder when $f(x)$ is divide $g(x)$. | and by | | 13. | (a) | (i) | Using the canonical decomposition of 1050 and 2574, find the | heir
(8) | | | | (ii) | Apply Euclidean algorithm to express the gcd of 3076 and 1976 a linear combination of themselves. | as a
(8) | | | | | \mathbf{Or} | | | | (b) | (i) | Find the number of positive integers \leq 999 that are divisible 7 and 13. | by (8) | | | | (ii) | Prove that the product of gcd and lcm of any two positive integer and b is equal to their products. | rs a (8) | | | | | | | | 14. | (a) | (i) Find the general solution of the linear Diophantine equ $6x + 8y + 12z = 10$. | iation
(8) | | |-----|---|--|---------------|--| | | | (ii) Find the incongruent solutions of $5x \equiv 3 \pmod{6}$. | (8) | | | | | ${ m Or}$ | | | | | (b) | State Chinese Remainder Theorem. Using it solve | | | | | | $x \equiv 1 \pmod{3}, x \equiv 2 \pmod{4}, \text{ and } x \equiv 3 \pmod{5}.$ | (16) | | | 15. | (a) | (i) Prove that the Euler's Phi function is multiplicative. | (8) | | | | | (ii) Compute tau and sigma functions for $n = 2187$. | (8) | | | | | Or | | | | | (b) State and prove Fermat's Little theorem. Hence, compute the
when 7 ¹⁰⁰¹ is divided by 17. | | | |