Reg. No. :
Question Paper Code: 50839

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2023.

Fifth Semester

Computer Science and Engineering

MA 8551 — ALGEBRA AND NUMBER THEORY

(Common to : Computer and Communication Engineering/Information Technology)
(Regulations 2017)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. Give an example for a finite abelian group.
- 2. Find the inverse of 4 under the binary operation * defined in Z by a*b=a+b-2.
- What are the characteristics of the rings (Z,+,.) and (Q,+,.)?
- 4. Give an example for an irreducible and reducible polynomial in $Z_2[x]$.
- 5. Find the number of positive integer's ≤ 1576 and not divisible by 11.
- 6. Obtain the gcd of (15, 28, 50).
- 7. Determine whether the LDE 5x + 20y + 30z = 44 is solvable.
- 8. What is the remainder when 3^{31} is divided by 7.
- 9. State Wilson's theorem.
- 10. Compute $\phi(n)$ for n = 146.

PART B - (5 × 16 = 80 marks)

11.	. (a)) (i)	Determine whether (Z, \oplus, \odot) is a ring with the binary open $x \oplus y = x + y - 7$, $x \odot y = x + y - 3xy$ for all $x, y \in Z$.	ration (8)
		(ii)	Prove that Z_n is a field if and only if n is a prime.	(8)
			Or	
	(b)	(i)	Prove that commutative properties is invariant unhomomorphism.	under (8)
		(ii)	Find $[777]^{-1}$ in Z_{1009} .	(8)
12.	(a)	(i)	If R is a ring under usual addition and multiplication, show $(R[x],+,x)$ is a ring of polynomials over R .	that (8)
		(ii)	Find all the roots of $f(x) = x^2 + 4x$ in $Z_{12}[x]$.	(8)
			Or Same	
	(b)	(i)	If $f(x) \in F[x]$ has degree $n \ge 1$, then prove that $f(x)$ has atmorpoots in F.	st n (8)
		(ii)	If $f(x) = 3x^5 - 8x^4 + x^3 - x^2 + 4x - 7$, $g(x) = x + 9$ $f(x)$, $g(x) \in Z_{11}[x]$, find the remainder when $f(x)$ is divide $g(x)$.	and by
13.	(a)	(i)	Using the canonical decomposition of 1050 and 2574, find the	heir (8)
		(ii)	Apply Euclidean algorithm to express the gcd of 3076 and 1976 a linear combination of themselves.	as a (8)
			\mathbf{Or}	
	(b)	(i)	Find the number of positive integers \leq 999 that are divisible 7 and 13.	by (8)
		(ii)	Prove that the product of gcd and lcm of any two positive integer and b is equal to their products.	rs a (8)

14.	(a)	(i) Find the general solution of the linear Diophantine equ $6x + 8y + 12z = 10$.	iation (8)	
		(ii) Find the incongruent solutions of $5x \equiv 3 \pmod{6}$.	(8)	
		${ m Or}$		
	(b)	State Chinese Remainder Theorem. Using it solve		
		$x \equiv 1 \pmod{3}, x \equiv 2 \pmod{4}, \text{ and } x \equiv 3 \pmod{5}.$	(16)	
15.	(a)	(i) Prove that the Euler's Phi function is multiplicative.	(8)	
		(ii) Compute tau and sigma functions for $n = 2187$.	(8)	
		Or		
	(b) State and prove Fermat's Little theorem. Hence, compute the when 7 ¹⁰⁰¹ is divided by 17.			