						·						
			 	***	 _		·····			 *****	_	
W-3	3. T			- 1			ı	ı	i .			
200	N. J.	a				i	ı	ı	i .	L	1.	

Question Paper Code: 50534

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2024.

Fourth Semester.

Civil Engineering

CE 3401 — APPLIED HYDRAULICS ENGINEERING

(Regulations 2021)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Define Froude Number.
- 2. State the application of Manning's formula.
- 3. List the classification of flow profile.
- 4. Define afflux.
- 5. What is meant by Standing wave?
- 6. List the assumptions made in deriving an expression for the depth of hydraulic jump.
- 7. Give the working principle of Impulse turbine.
- 8. List out the applications of draft tube.
- 9. Give an abbreviation of NPSH and its application.
- 10. Define Negative slip.

PART B — $(5 \times 13 = 65 \text{ marks})$

11. (a) Calculate the bottom slope and conveyance 'K' of a rectangular flume of width 500 mm and depth of flow 300 mm having adjustable bottom slope with a flow of 100 lps. Take Chezy's constant as 56.

Or

(b) Explain the classification of flow in open channels with a neat sketches.

Explain the procedure for flow profiles determination by standard step 12. (a) method. OrCalculate the following given below for a rectangular channel of width (b) 7 m and depth of water 1.1 m, having a flow of 12 m³/s. Specific energy of a flowing water (5)(i) (ii) Critical depth and Critical Velocity (4)(iii)Value of minimum of specific energy. (4)13. (a) Discuss the types of hydraulic jump with a suitable sketch and mention their applications. Discuss the application of momentum equation for rapidly varied flow. (b) Discuss in detail the various types of efficiencies of a turbine. 14. (a) Or (b) Compute the diameter of Pelton turbine and jet which develops 3000 kW under a head of 300 m having an overall efficiency of 83%, speed ratio = 0.46, coefficient of velocity (C_v) = 0.98, and specific speed (N) = 16.5. 15. (a) Illustrate the characteristics curves of Centrifugal pumps with a neat sketch and its purpose. (13)Or Explain the parts and the working principle of a reciprocating pump with (b) a neat sketch.

PART C —
$$(1 \times 15 = 15 \text{ marks})$$

16. (a) Compute the power output of a three stage Centrifugal pump running at 1000 rpm delivering a discharge of 30 lps having an impeller of 30 cm diameter, 2 cm wide at outlet with vanes curved back at the outlet at 45° and reduce the circumferential area by 10%. Take manometric efficiency as 90% and overall efficiency as 75%.

Or

(b) Illustrate the process of cavitation with its effect and precautionary measures. Also discuss cavitation in turbines. (15)