|            | <br>  | <br> |     |   |
|------------|-------|------|-----|---|
| Reg. No. : |       |      |     |   |
|            | <br>L |      | £ I | 1 |

## Question Paper Code: 50540

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2024.

## Fifth Semester

## Civil Engineering

## CE 3501 — DESIGN OF REINFORCED CONCRETE STRUCTURAL ELEMENTS

(Regulations 2021)

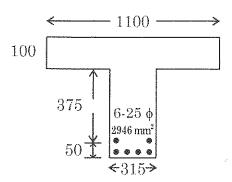
Time: Three hours Maximum: 100 marks

(Use of IS 456 and SPC16, SP34, Design charts are Permitted)

Answer ALL questions.

PART A —  $(10 \times 2 = 20 \text{ marks})$ 

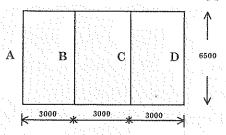
- 1. Recall any two assumptions of working stress method.
- 2. Determine the modular ratio of M 25 grade concrete.
- 3. List four different cases in Flanged beam.
- 4. Highlight the types of reinforcement used to resist shear.
- 5. Recall the reason for provision of corner reinforcements in a two way slab.
- 6. Distinguish between one way shear and punching shear in flat slab.
- 7. Define slenderness ratio. Classify the columns based on slenderness ratio.
- 8. Write a short note on the Axially loaded column.
- 9. Mention the situation at when trapezoidal combined footings are provided.
- 10. List the assumptions made in combined footing.


PART B — 
$$(5 \times 13 = 65 \text{ marks})$$

11. (a) Explain the concept of elastic method and ultimate load method Write the advantages of limit state method over other methods.

Or

(b) A reinforced concrete beam is supported on two walls 250 mm thick, spaced at a clear distance of 6 m. The beam carries a super-imposed load of 9.8 kN/m. Design the beam using M20 concrete and HYSD bars of Fe 415 grade.


12. (a) Determine the MOR of flanged beam. The area of the steel in tension zone is 6 numbers of 25 mm diameter bars. Use M20 and Fe415.



All dimension are in mm

Or

- (b) Design a flanged beam with bf = 1000 mm, Df = 100 mm, bw = 300 mm subjected to a live load of  $4 \text{ kN/m}^2$ . Use M30 and Fe500.
- 13. (a) Design the one-way continuous slab subjected to uniformly distributed imposed loads of  $5 \text{ kN/m}^2$  using M 20 and Fe 415. The load of floor finish is  $1 \text{ kN/m}^2$ . The span dimensions shown in the following diagram are effective spans. The width of beams at the support = 300 mm.



All dimension are in mm

Or

- (b) Design one of the flights of a dog legged stairs spanning between landing beams using the following data. Type of staircase: dog legged with waist slab, treads and risers number of steps in the flight = 10 rise R=150 mm Tread T = 300 mm. Width of landing beams = 300 mm. Use M20 grade concrete and Fe 415 steel.
- 14. (a) Design the reinforcement in a column of size 400 mm × 600 mm subjected to an axial load of 2000 kN under service dead load and live load. The column has an unsupported length of 4.0 M and effectively held in position and restrained against rotation in both ends. Use M 25 concrete and Fe 415 steel.

Or

- (b) Design a square or circular column to carry a working load of 980 kN. the grades of concrete and steel are M 20 and Fe 415 respectively. Assume that the column is short.
- 15. (a) Explain the types of shallow foundation with neat sketches.

Or

(b) Two columns having cross-section of  $250 \times 250$  mm and  $300 \times 300$  mm are loaded with 300 kN and 500 kN respectively. The c/c distance between the columns is 4 m and the bearing capacity of soil is  $100 \text{ kN/m}^2$ . Design a rectangular combined footing without a beam.

PART C — 
$$(1 \times 15 = 15 \text{ marks})$$

16. (a) Calculate load carrying capacity of column 300 mm × 450 mm in size reinforced with 4 number of 16 mm diameter bars and 4 number of 12 mm diameter bars. Use M20 and Fe45 steel.

Or

(b) Design a RCC square footing for a column 400 mm × 400 mm to carry an axial load of 1200 kN. Take SBC of soil as 200 kN/m² and density of soil as 18 kN/m³. Use M20 concrete and Fe 415 steel. Check for punching shear and one way shear need not be given.