		T	
Reg. No.:	1		
=			22.7

Question Paper Code: 71066

B.E./ B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2023.

Seventh Semester

Agriculture Engineering

OCH 752 - ENERGY TECHNOLOGY

(Common to: Biomedical Engineering/ Computer Science and Engineering/
Computer and Communication Engineering/ Electronics and Communication
Engineering/ Electronics and Telecommunication Engineering/ Medical Electronics/
Artificial Intelligence and Data Science/ Computer Science and Business Systems/
Information Technology)

(Regulations 2017)

Time: Three hours Maximum: 100 marks

Answer all questions in Part – A and as per choice in Part – B & Part – C.

Part – A Part – B and Part – C questions should be answered separately in the same answer sheet. Any Missing Data can be Suitably Assumed.

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Why energy is an essential part of human life?
- 2. How can we fix energy crisis?
- 3. What is the difference between conventional and nonconventional sources?
- 4. What is the combustion efficiency of fluidized bed?
- 5. How does the darrieus rotor work?
- 6. What is geothermal energy and how does it work?
- 7. How does biomass energy work?
- 8. Define biocrude.
- 9. Why energy conservation is important?
- 10. What is meant by energy performance?

PART B — $(5 \times 13 = 65 \text{ marks})$

11.	. (a) Discuss in detail about various forms of energy with its common		
		(13)	
	(b)	Explain in detail about Indian Energy Scenario in terms of Energy supply and consumption. (13)	
12.	(a)	A steam power station spends Rs. 30 lakhs per annum for coal used in the station. The coal has a calorific value of 5000 kcal/kg and costs Rs. 300 per ton. If the station has thermal efficiency of 33% and electrical	
		efficiency of 90%, find the average load on the station. (13)	
		\mathbf{Or}	
	(b)	Draw and explain the operation of a modern steam power station. (13)	
13.	(a)	With suitable data, Explain about the wind electric power generation in India.	
		\mathbf{Or}	
	(b)	What is the present status of development of biomass energy resources in (13)	
		India? Explain. (13)	
14.	(a)	Compare the relative performance of a floating drum and fixed one type biogas plants. (13)	
		Or	
	(b)	Explain in detail about the function of Deenbandhu biogas digester with	
		a neat sketch. And also write its merits and demerits. (13)	
15.	(a)	Explain suitably about the necessity of energy conservation. (13)	
		Or	
	(b)	Give a neat description note on Energy conservation Act, 2001. (13)	
		2 71066	

PART C — $(1 \times 15 = 15 \text{ marks})$

16. (a) What is meant by Energy Plantation? What are its features and significance? (15)

Or

- (b) Considering the data given below, find out the output power of a module operating to achieve maximum power point (15)
 - (i) typical maximum power at STC = 87W
 - (ii) NOCT 49°C
 - (iii) Power output coefficient 0.38%
 - (iv) Ambient temperature = 35°C
 - (v) Irradiance = 865 w/m^2 .