Reg. No.:			

Question Paper Code: 20935

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2023.

Fifth Semester

Electronics and Communication Engineering

EC 3552 – VLSI AND CHIP DESIGN

(Common to: Electronics and Telecommunication Engineering)

(Regulations 2021)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. How does MOSFET act as a switch?
- 2. Realize the 2:1 multiplexer using transmission gates.
- 3. Draw the stick diagram for 2-input NAND gate.
- 4. What are the disadvantages of pass transistor logic?
- 5. Differentiate latches and registers.
- 6. What are the timing classification of digital system?
- 7. List the various interconnect parameters analyzed in VLSI chip design.
- 8. What is the significance of FPGA?
- 9. Differentiate FPGA design and ASIC design flow.
- 10. Write the test bench in Verilog HDL to test the D-flip flop.

PART B — $(5 \times 13 = 65 \text{ marks})$

11.	(a)	(i)	Obtain the first order model relating the current a for an nMOS transistor in three regions of operation		(I-V) (7)
		(ii)	Discuss the velocity saturation and mobility deg nMOS transistor under non-ideal I-V effects.	radation o	of an (6)
			Or		
	(b)	Hillman, etc.	cidate the dynamic behaviour of MOSFET and disc ponent.	uss each o	f the (13)
12.	(a)	(i)	Realize the AND gate using pass transistor logic a operation circuit.	and explain	the (6)
		(ii)	Discuss the disadvantages of dynamic logic gate solution to overcome the disadvantages.	s. Provide	the (7)
			Or	•	
	/L\	7.7	Find the Flynous's constant for 4 input NAMD mate		(C)
	(b)	(i)	Find the Elmore's constant for 4-input NAND gate.		(6)
		(ii)	What are the types of power dissipation in CMOS cirtotal power dissipation and discuss the low power de		
13.	(a)	(i)	Explain the multiplexer based latches and mastriggered register.	ter slave (edge (7)
		(ii)	Describe the true single phase clock register.		(6)
			Or		
	(b)	(i)	Illustrate the combined effect of skew and jitter in scircuit and find the time period of the clock.	sequential l	logic (7)
		(ii)	Design the sequential logic circuit based on self-time	d approach	. (6)
14.	(a)	(i)	Write the design techniques in dealing with capacitiv	e cross talk	t. (6)
		(ii)	Describe the design techniques available to the design	gner to add	ress
			the voltage drop over the inductor problem.		(7)
			Or		

	(b)	(i)	Realize the combinational function with PLA.	
			$Y1 = \sum m(2,3,4,6)$ $Y2 = \sum m(1,2,3,4)$ (7)
		(ii)	Elucidate the basic architecture of FPGA. (6)
15.	(a)	(i)	Illustrate the microchip design process and identify the issues test.	in 7)
		(ii)	What are common fault models in CMOS design? With a suitab diagram enlighten the causes of faults.	le 6)
			Or	
	(b)	(i)	Explain the automatic test pattern generation with a suitab example.	le 7)
		(ii)	Describe the boundary scan with necessary diagrams.	6)
			PART C — $(1 \times 15 = 15 \text{ marks})$	
16.	(a)	Real	ize the sum of minterms $F = \sum m(0,1,7,11,15) + \sum d(2,3,5)$ using Static CMOS logic and	1g 7)
		(ii)	Clocked CMOS logic. (8	3)
			${ m Or}$	
(b)	(b)	(i)	Apply the concept of 3-stage pipelining to $\log(a_n + b_n)$ and find the number clock period for $n=3$ to get the output.	ne 7)
		(ii)	Design a 4-bit binary to excess-3 code converter using ROM. (8	3)