						,	

Question Paper Code: 70516

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2023.

Fifth Semester

Electronics and Communication Engineering

EC 8501 - DIGITAL COMMUNICATION

(Regulations 2017)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. State the properties of mutual information.
- 2. What is Binary symmetric channel?
- 3. Mention the drawbacks of Delta modulation.
- 4. Express the data 101011 using the Manchester code format.
- 5. Define Equalization.
- 6. List the properties of matched filter.
- 7. Differentiate coherent and Non coherent receivers.
- 8. Draw the constellation diagram of 8 QAM Modulation.
- 9. What is the use of error control coding in Digital Communication?
- 10. How the convolutional codes are different from block codes?

11. (a) Derive the Shannon's channel capacity theorem and show that the channel capacity is $C = B \log_2 \left(1 + \frac{P}{N_0 B}\right) b/s$.

Or

- (b) A discrete memory less source has an alphabet of seven symbols with probabilities [0.4, 0.14, 0.16, 0.15, 0.05, 0.1]. Compute the Huffman code for this source symbols. Also determine average codeword length and efficiency.
- 12. (a) Construct and explain Delta modulation system with neat block diagram and waveforms.

Or

- (b) (i) Explain the operating principle of Adaptive Delta modulation. Also list its advantages. (7)
 - (ii) Briefly discuss about the properties of line codes. (6)
- 13. (a) State and prove Nyquist criterion for distortion less base band binary transmission.

Or

- (b) (i) Illustrate the effect of ISI in base-band binary data transmission system. (6)
 - (ii) Explain the design procedure to obtain the impulse response coefficients of a zero forcing equalizer. (7)
- 14. (a) Derive the expression for bit error probability of Binary phase shift keying scheme with appropriate signal space diagram.

Or

- (b) Construct and explain the generation and detection of coherent QPSK scheme with neat diagrams.
- 15. (a) (i) Consider the generator polynomial of the cyclic encoder as $g(x) = 1 + x + x^3$. Determine the encoded code word for the message sequence 1011. (7)
 - (ii) Explain in detail about the syndrome decoding procedure of linear block codes. (6)

Or

- (b) Consider the generator polynomial of the Convolutional encoder $g_1(x) = 1 + x + x^2$; and $g_2(x) = 1 + x^2$.
 - (i) Draw the structure of the convolutional encoder. (6)
 - (ii) Determine the convolution code for the data sequence 101011. (7)

PART C $-(1 \times 15 = 15 \text{ marks})$

- 16. (a) Consider a (6, 3) systematic linear block code in which the three parity check digits are given as $c_4 = d_1 + d_2 + d_3$; $c_5 = d_1 + d_2$; $c_6 = d_1 + d_3$.
 - (i) Construct the appropriate generator matrix for this code. (4)
 - (ii) Construct all possible code words generated by this matrix. (4)
 - (iii) Determine the error correcting capability of this code. (4)
 - (iv) Prepare a suitable decoding table and decode the following received codes 101100, 100110.

Or

(b) The input source to a noisy communication channel is a random variable X over the four symbols a, b, c, d. The output from this channel is a random variable Y over these same four symbols. The joint distribution of these two random variables p(X,Y) is as follows:

$$p(X,Y) = \begin{bmatrix} 0.125 & 0.0625 & 0.0625 & 0.25 \\ 0.0625 & 0.125 & 0.0625 & 0 \\ 0.03125 & 0.03125 & 0.0625 & 0 \\ 0.03125 & 0.03125 & 0.0625 & 0 \end{bmatrix}.$$
 Find the Entropy $H(X), H(Y), H(Y/X)$ and $H(X,Y)$.