Question Paper Code: 70519

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2023.

Fifth Semester

Electronics and Communication Engineering

EC 8553 – DISCRETE-TIME SIGNAL PROCESSING

(Common to Biomedical Engineering / Computer and Communication Engineering / Electronics and Telecommunication Engineering / Medical Electronics)

(Regulations 2017)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What is deterministic signal? Give an example.
- 2. What are the properties of twiddle factor?
- 3. Give any two properties of Butterworth Low Pass Filter.
- 4. Distinguish between Butterworth and Chebyshev Type-I filter.
- 5. What are the conditions for impulse response of the FIR filter to have linear phase?
- 6. What are the desirable characteristics of the window to design FIR filter?
- 7. What are the three quantization errors due to finite word length effects in digital filter?
- 8. What is meant by rounding and truncation?
- 9. What are the classification of digital signal processors?
- 10. What is pipelining?

PART B - (5 × 13 = 65 marks)

11.	(a)	State and prove any three properties of Discrete Fourier Transform (DFT).								
					Or					
	(b)	Find t	he DFT of the	sequenc	e $x(n) = \{1,$	1, 1, 1, 1, 1, 1} ι	ısing FFT algori	thm.		
12.	(a)	ding 🔪 📆 kanada seb	Vrite the mag lot it.	gnitude re	esponse of	Butterworth	Low Pass Filter	and (4)		
		(ii) V	Write the properties of Butterworth Low Pass Filter.							
		(iii) C	live the proce	dure to d	esign digit	al filters from	analog filters.	(5)		
					Or					
	(b)						ter transfer fun nation methods.			
		(ii) C	live the differ	ent types	of structu	res to realize	IIR filter.	(5)		
13.	(a)	Derive two ca		ar phase FIR	filter for the b	elow				
		(i) S	Symmetric Im	pulse Res	sponse whe	n N odd		(7)		
		(ii) S	symmetric Im	pulse Res	sponse whe	n N even.	e tu	(6)		
					Or					
	(b)		are the differe And give thei			functions ava	ailable to design	FIR		
14.	(a)		n limit cycle oand of that s		r of a syste	em with one e	example and find	d the		
					Or					
	(b)		n different quors arising d				rd length effects	and		
15.	(a)	Explai	n the function	as of TMS	320C50 pr	ocessor with	neat diagram.			

Or

Explain briefly about the instruction sets of TMS320C50 processor.

15. (a)

(b)

PART C — $(1 \times 15 = 15 \text{ marks})$

16. (a) An FIR digital filter has the unit impulse response sequence $h(n) = \{2, 1, -1\}$. Determine the output sequence y(n) in response to the input sequence $x(n) = \{1, 2, 3, -1, -2, -3, 4, 5, 6\}$ using the Overlap add method.

Or

(b) Design a third order Butterworth digital filter using impulse invariant method and realize it using Direct form - II structure. (Assume sampling period T = 1 sec)