_	The state of the state of	1	<u></u>	L	<u> </u>	

Question Paper Code: 70911

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2023

Third/Sixth/Seventh Semester

Mechanical Engineering

ME 8792 - POWER PLANT ENGINEERING

(Common to Electrical and Electronics Engineering / Safety and Fire Engineering)

(Regulations 2017)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Define draught with regard to a steam power plant.
- 2. State the function of a condenser in a thermal power plant.
- 3. Represent the Brayton cycle on p-v and T-s planes.
- 4. Mention the uniqueness of combined cycle system.
- 5. Which type of Uranium is used in a nuclear reactor-U²³⁵ or U²³⁸? Justify.
- Write down any one nuclear fission reaction.
- 7. What do you understand by the word 'dam' in a hydroelectric power plant?
- 8. What is bio-gas? How is it utilised for power generation?
- 9. _____ cost is higher in a hydroelectric power plant and ____ cost is higher in a thermal power plant.
- 10. List some types of power tariff.

PART B — $(5 \times 13 = 65 \text{ marks})$

- 11. (a) (i) Draw a typical layout of a thermal power plant and indicate the functioning of the various components. (9)
 - (ii) Define steam rate and heat rate.

(2+2)

	(b)	Expl	xplain the functioning of the following with a schematic diagram.						
		(i)	Coal handling						
		(ii)	Ash handling						
		(iii)	Cooling tower (4+4+5)						
12.	(a)	(i)	Describe the working of an open cycle gas turbine power plant. Represent the power plant on a T-s/p-v plane. (8)						
		(ii)	Briefly discuss about combined cycle system with a schematic. (5)						
			Or						
	(b)	Drav Also plan	v a schematic and explain the layout of a Diesel based power plant. discuss the function of various components of a Diesel based power t: (4+5+4)						
13.	(a)	(i)	List some safety measures followed in a nuclear reactor. (5)						
		(ii)	How is a breeder type reactor special from a normal reactor? Elaborate. (5)						
		(iii)	Mention some subsystems of a nuclear reactor. (3)						
			Or						
	(b)	(i)	Distinguish between boiling water and pressurised water reactors with a schematic. Which type is common in India? (7+2)						
		(ii)	What is a CANDU type reactor? In what way is it different from a conventional nuclear reactor? (2+2)						
14.	(a)	(i)	Explain how electric power can be generated from a windmill. Also draw a neat sketch of the same. Also list the merits of wind power compared with power generation from conventional sources. (4+4+2)						
		(ii)	Draw a schematic of a basic proton exchange membrane type fuel cell. (3)						
			\mathbf{Or}						
	(b)	(i)	Explain how electric power can be generated using a solar panel. Explain with a relevant sketch. (4+4)						
		(ii)	Draw a schematic diagram of a solar based thermal power plant. (5)						
15.	(a)	(i)	What is a load curve? Discuss its significance with a schematic diagram. (3+5)						
		(ii)	Discuss on some pollution control techniques followed in a thermal plant. (5)						

- (b) (i) Elaborate on the site selection criteria for a thermal and nuclear power plant. (4+5)

 (ii) Brief about waste disposal in a nuclear power plant. (4)
 - PART C $(1 \times 15 = 15 \text{ marks})$
- 16. (a) What are cogeneration systems? List the merits of them. Elaborate any one type of cogeneration system in detail with a schematic diagram.

 (3+3+9)

Or

- (b) (i) What are supercritical boilers? Mention their merits and demerits. (3+3)
 - (ii) Discuss briefly about different types of power tariff. (4)
 - (iii) Name some important load distribution parameters and mention their significance. (5)