

Reg. No.:						89 hs
-----------	--	--	--	--	--	-------

Question Paper Code: 91498

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2019 Sixth Semester

Electrical and Electronics Engineering EE 6604 – DESIGN OF ELECTRICAL MACHINES (Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART - A

(10×2=20 Marks)

- 1. What are the causes of failure of insulation?
- 2. What are the factors that decide the choice of specific magnetic loading?
- 3. How the ampere turns of the series field coil is estimated?
- 4. Write down the expression for brush friction losses
- 5. Define windows space factor.
- The voltage pre turn of a 500 KVA, 11KV, Δ/Y three phase transformer is 8.7 V, calculate the number of turns per phase of LV and HV windings.
- 7. What are the typical values of SCR for salient pole and turbo alternators?
- 8. State different losses in the induction motor.
- 9. Mention the uses of damper windings in a synchronous machine.
- 10. What is the limiting factor for the diameter of synchronous machine?

(6)

(7)

D	TOTAL	- 10
11/2	ART -	$-\mathbf{r}$

(5×13=65 Marks)

- a) i) What are the electrical properties of insulating materials? Classify the insulating materials based on thermal consideration.
 - ii) Write short notes on standard specifications. List the parameters involve in marking standard specifications.

(OR)

- b) i) Derive the heating and cooling curve of an electrical machine. (7)
 - ii) For a certain d.c. generator the core loss is 1000 W and the armature resistance is 0.025 ohm. The core and windings form a cylinder 0.25 m long and 0.25 m in diameter. Specific loss dissipation is 230 W/m² – C. Calculate the specific electric loading which would result in windings and core having a temperature rise of 40C. The machine is wave wound with 270 armature conductors.

12. a) i) Draw the magnetic circuit of dc machine. (6)

ii) Calculate the main dimensions of a 20 Hp, 1000 rpm, 400 V, dc motor. Given that b_{av} = 0.37 Wb/m² and ac = 16000 amp.cond./m. Assume an efficiency of 90%.

(OR)

- b) Design the shunt field winding of a 6 pole, 440 V, dc generator allowing a drop of 15% in the regulator. The following design data are available. MMF per pole = 7200; mean length of turn = 1.2 m; winding depth = 3.5 cm; Watts per sq.m. of cooling surface = 650.
- 13. a) i) How to calculate no-load current of a transformer?
 (6)
 - ii) Determine the dimension of the core, the number of turns, the cross-section area of conductors in primary and secondary windings of a 100 KVA, 2200/480 V, 1-phase, core type transformer, to operate at a frequency of 50 Hz, by assuming the following data. Approximate Volt/turn = 7.5 Volt. Maximum flux density = 1.2 Wb/m². Ratio of effective cross-sectional area of core to square of diameter of circumscribing circle is 0.6. Ratio of height to width of window is 2. Window space factor = 0.28. Current density = 2.5 A/mm².

(OR)

b) A 250 KVA, 6600/400 V, 3-phase core type transformer has a total loss of 4800 watts on full load. The transformer tank is 1.25 m in height and 1m × 0.5 m in plan. Design a suitable scheme for cooling tubes if the average temperature rise is to be limited to 35°C. The diameter of the tube is 50 mm and are spaced 75 mm from each other. The average height of the tube is 1.05 m.

1111111						-3-				91498
14	a)	i)	What	t are the fa	ctors to be o	onsidere	d for esti	mating the l	ength of air gap	? (6)
		ii)	of sta 1425 amp,	ator slots a rpm, delta	nd the num connected ll load effic	aber of co l inductio	nductors on motor	s for a 11 KV :. B _{av} = 0.45	or core, the nun V, 400 V, 3¢, 4-p Wb/m², ac = 23 The stator emp	oole, 8000
			(OR)							
	b)	Ta	ductio ike D	on motor l	naving a f id L = 17 cn	ull load n. Stator	η of 879	% and a fu	ole, delta connect ll load pf of 0 s/slot = 14. Assi	.85.
15. a)	i)	Deriv	ve the outp	ut equation	n of syncl	hronous	machine.		(6)	
		ii)	numb	n data. B	= 0.48 Wb = 144, slot	b/m^2 , $\delta = 1$ t size = 1	2.7 amp 20×20 m	/mm ² , slot s	or has the follow space factor = 0 2 m and L = 0.4	.35.
				(OR)					
b)	i) What is short circuit ratio? How the value of SCR affects the design of alternator?						n of (6)			
		ii)	How i	is cylindrica	l pole differe	ent from s	alient po	de in a synch	ronous machine	3327.74
						PART	– C		(1×15=15	Marks)
16.	16. a)	i)	List s	ome leaka	ge fluxes a	vailable i	n the ro	tating mach	ine.	(7)
		ii)	How t	the temper	ature rises	in trans	formers	?		(8)
				(OR)					33.37
	b)	sta	r con	ne the outpu	ernator wi	th sinus	oidal flu	ax distribut	nase, 10 pole, 50 tion. The wind	Hz ing

has 60° phase spread and full pitch coils. ac = 30,000 ac/m, $B_{ac} = 0.6$ T. If the peripheral speed of the rotor must not exceed 100 m/sec and the ratio pole pitch to core length is to be between 0.6 and 1. Find D and L. Assume an air gap length of 6 mm, find also the approximate number of stator conductors. (15)