PART C —
$$(1 \times 15 = 15 \text{ marks})$$

16. (a) For the two bar truss as shown in Fig. 5 determine the displacements at node 2 and the stresses in both elements.

Fig. 5

Or

(b) Solve the following simultaneous equations using Gaussian elimination method.

20819

$$2a + b + 2c - 3d = -2$$

$$2a - 2b + c - 4d = -15$$

$$1a + 2c - 3d = -5$$

$$4a + 4b - 4c + d = 4$$
.

	4		CAN
Reg. No.	:		

Question Paper Code: 20819

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2018.

Sixth/Seventh Semester

Mechanical Engineering

ME 6603 — FINITE ELEMENT ANALYSIS

(Common to Mechanical Engineering (Sandwich), Automobile Engineering, Manufacturing Engineering, Mechanical and Automation Engineering)

(Regulations 2013)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What are h and p versions of finite element method?
- 2. Why is variational formulation referred to as weak formulation?
- 3. Polynomials are generally used in shape function, why?
- 4. Differentiate between longitudinal vibration and transverse vibration.
- 5. Classify elements, based on their dimensions.
- 6. What is steady state heat transfer and write its governing equation.
- 7. Differentiate CST and LST elements.
- 8. Give four applications where axisymmetric elements can be used.
- 9. What is meant by 'Isoparametric element'?
- 10. With example, define Serendipity elements?

PART B —
$$(5 \times 13 = 65 \text{ marks})$$

11. (a) Explain the steps involved in finite element formulation.

Or

- (b) For the differential equation $-\frac{d}{dx}\left[(1+x)\frac{dy}{dx}\right] = 0$ for 0 < x < 1 with the boundary conditions y(0) = 0 and y(1) = 1, obtain an approximate solution using Rayleigh-Ritz method.
- 12. (a) The beam is loaded as shown in Fig. 1; determine
 - (i) The slopes at 2 and 3 and
 - (ii) The vertical deflection at the midpoint of the distributed load.

Fig. 1

Or

- (b) Determine the natural frequencies of transverse vibration for a beam fixed at both ends. The beam may be modeled by two elements, each of length L and cross sectional area A. The use of symmetry boundary condition is optional.
- 13. (a) Using two finite elements, find the stress distribution in a uniformly tapering bar of cross sectional area 300 mm² and 200 mm² at their ends, length 100 mm, subjected to an axial tensile load of 50 N at smaller end and fixed at larger end. Take $E = 2 \times 10^5 \text{ N/mm}^2$.

Or

(b) A composite wall through which heat inside layer with $k_1 = 0.02$ W/cm°C, middle layer $k_2 = 0.005$ W/cm°C, outer layer $k_3 = 0.0035$ W/cm°C. The thickness of each layer 13 mm, 80 mm and 25 mm respectively. Inside temperature, of the wall is 20°C and outside temperature of the wall is -15°C. Determine the nodal temperatures.

14. (a) For a plane stress element shown in Fig.2, the nodal displacements $((u_1,v_1),(u_2,v_2) \text{ and } (u_3,v_3))$ are ((2, 1) (1, 1.5) and (2.5, 0.5)) respectively. Determine the element stress. Assume $(E = 200 \text{ GN/m}^2, \ \mu = 0.3 \text{ and } t = 10 \text{ mm})$ all coordinates are in millimeters.

Fig. 2

Or

b) Calculate the element stresses for the axisymmetric element shown in Fig. 3. The nodal displacements are

$$u1 = 0.02 \text{ mm}$$
 $w1 = 0.03 \text{ mm}$ $u2 = 0.01 \text{ mm}$ $w2 = 0.06 \text{ mm}$

$$u3 = 0.04 \text{ mm}$$
 $w3 = 0.01 \text{ mm}$

Take E = 210 Gpa,
$$\mu$$
 = 0.25

Fig. 3

15. (a) For the element shown in Fig. 4, determine the Jacobian matrix.

Fig. 4

Or

b) Evaluate the integral using Gaussian quadrature method with two point scheme.

$$I = \int_{1}^{-1} \int_{1}^{-1} (2x^2 + 3xy + 4y^2) \, dx \, dy.$$