L KARATA DIKAN BARA KARA BARA KARA	
------------------------------------	--

Reg. No. :	

Question Paper Code: 41170

05/05/18 (AN)

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2018 Sixth/Seventh/Eighth Semester Electrical and Electronics Engineering GE 6081 – FUNDAMENTALS OF NANOSCIENCE

(Common to: Electronics and Instrumentation Engineering/Instrumentation and Control Engineering/Manufacturing Engineering/Mechanical Engineering/Production Engineering/Technology/Chemical Engineering/Pharmaceutical

Technology/Polymer Technology)

(Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART - A

 $(10\times2=20 \text{ Marks})$

- 1. Give two examples fo materials and their specific properties which change when synthesised as nanomaterials.
- 2. Give a brief classification of nanomaterials.
- 3. What are the two main approached followed for nanomaterial synthesis?
- 4. Write a short note on MOMBE.
- 5. What are nanoclays?
- 6. What are quantum dots? Explain.
- 7. Derive Bragg's law.
- 8. Name any two surface analysis techniques. What is nanoindentation?
- 9. Write a short note on molecular switch.
- 10. How nanotechnology is useful for solar cell applications?

		PART – B	$(5\times13=65 \text{ M})$	arks)
11. a)	Explain in detail the implicat in nanoscale.	tions, advantages and d	sadvantages of material	s (13)
4	(OR)			,,,,,
b)	Explain the effect of length s	scale on the properties	of various materials.	(13)
12. a)	Explain different methods of (OR)	f nanoparticle synthesis	s through solution.	(13)
b)	Explain any two methods of	thin film deposition an	d their advantages.	(13)
	Write in detail about various methods. (OR)			s (13)
b)	Give details of structure, pr materials. i) ZnO	roperties and few appli i i) ZrO_2	cations of the following	(13)
· i	ii) Nanoalumina	iv) AgTiO ₂		
14. a)	Explain in detail electron mic features of materials. (OR)	croscopy techniques to a	nalyse surface and bulk	(13)
	Explain the following: i) SPM	ii) ESCA		(13)
15. a)	Write in detail about MEMS (OR)	and NEMS and their a	pplications.	(13)
b)	Explain in detail applications	of nanoscience in biote	echnology field.	(13)
		PART – C	(1×15=15 Mar	rks)
l6. a)	List out all the character	ization technique us	sed for nanomaterial	

characterization purpose.

(OR)

b) Give the applications of nanomaterials in Biomedical, Agriculture and Catalysis field. Explain with examples.