| Reg. No.: | | | 25.1 011 | |-----------|--|--|----------| | | | | | ## Question Paper Code: 90172 ## B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2019 Second Semester Electronics and Communication Engineering EC 8252 – ELECTRONIC DEVICES (Common to Medical Electronics/Electronics and Telecommunication Engineering) (Regulations 2017) Time: Three Hours Maximum: 100 Marks ## Answer ALL questions PART - A (10×2=20 Marks) - 1. What is meant by Avalanche breakdown? - 2. Give the expression for diffusion current density. - 3. For a transistor, if $\beta = 200$, find the value of α . - 4. Why BJT is called as current controlled device? - 5. What is meant by channel length modulation? - 6. Differentiate between JFET and MOSFET. - 7. Outline the working principle of Light Dependent Resistor. - 8. Differentiate CNTFET structure and traditional MOSFET structure. - 9. Mention the types of LCD's. - 10. What is an optocoupler and where it is used? | | PART - B | (5×13=65 Marks) | |----|--|---| | a) | Discuss about the forward bias and reverse bias characteristics derive the current equation for a PN diode. | of a diode and (13) | | | (OR) | | | b) | Derive the transition and diffusion capacitances in PN diode. | (13) | | a) | Explain the input and output characteristics of common base emitter configuration in BJT. | and common (13) | | | (OR) | | | b) | Derive the current gain, voltage gain, input impedance and outpin terms of hybrid parameters for a BJT. | out impedance
(13) | | a) | | FET. (13) | | b) | 7.525 | OSFET. (13) | | a) | i) Explain the construction and working of Schottky barrier d | iode. (7) | | | 5일 이번 교리를 다 보고 있다면 된 한 과상을 하면 하는데 되는데 되어 하는데 그를 하는데 보고 있다. | 100 | | | (OR) | | | b) | Explain the construction and working of MESFET with its
graph. | characteristic (7) | | | Explain the construction and working of LASER diode with its
graph. | characteristic (6) | | a) | Illustrate the working of SCR with equivalent circuit and character (OR) | teristic graph. (13) | | b) | Illustrate the working of UJT with equivalent circuit and charac | teristic graph. (13) | | | PART – C | (1×15=15 Marks) | | a) | The phosphorous (donor) concentration in a region of a silicon linearly from a concentration of $n_0=10^{14}~\rm cm^{-3}$ at $x=0~\rm mm$ to a of $n_1=10^{17}~\rm cm^{-3}$ at $x=1~\rm mm$. The diffusion constant fo $D_n=22.5~\rm cm^2/s$, the diffusion constant for holes is $D_p=5.2~\rm cm^2/s$ | crystal varies
concentration
r electrons is
cm ² /s, and the | | | temperature is 300 K. What is the diffusion current density is x-direction? (OR) | n the positive (15) | | b) | The reverse gate voltage of JFET, when changes from 4.4V to 4 current changes from 2.2 mA to 2.6 mA. The device parameter Maximum current I_{DSS} = 10 mA, Pinch off voltage, V_{DSS} = -4V. Fin of transconductance of the transistor and drain current for V_{GSS} | rs of JFET are
d out the value | | | b) a) b) a) b) a) b) a) | a) Discuss about the forward bias and reverse bias characteristics derive the current equation for a PN diode. (OR) b) Derive the transition and diffusion capacitances in PN diode. a) Explain the input and output characteristics of common base emitter configuration in BJT. (OR) b) Derive the current gain, voltage gain, input impedance and output in terms of hybrid parameters for a BJT. a) Illustrate the construction and characteristics of N-channel JI (OR) b) Illustrate the construction and working of Schottky barrier dii) Explain the construction and working of Schottky barrier dii) Explain the working of varactor diode with its characteristic (OR) b) i) Explain the construction and working of MESFET with its graph. ii) Explain the construction and working of LASER diode with its graph. a) Illustrate the working of SCR with equivalent circuit and characteristic (OR) b) Illustrate the working of UJT with equivalent circuit and characteristic (OR) b) Illustrate the working of UJT with equivalent circuit and characteristic (OR) b) Illustrate the working of UJT with equivalent circuit and characteristic (OR) b) Illustrate the working of UJT with equivalent circuit and characteristic (OR) b) Illustrate the working of UJT with equivalent circuit and characteristic (OR) b) Illustrate the working of UJT with equivalent circuit and characteristic (OR) b) The phosphorous (donor) concentration in a region of a silicon linearly from a concentration of no 10 10 14 cm 3 at x = 0 mm to a of n1 = 10 17 cm 3 at x = 1 mm. The diffusion constant for Dn = 22.5 cm 2/s, the diffusion constant for holes is Dp = 5.2 of temperature is 300 K. What is the diffusion current density is x-direction? (OR) b) The reverse gate voltage of JFET, when changes from 4.4V to 4 current changes from 2.2 mA to 2.6 mA. The device parameter Maximum current I_{DSS} = 10 mA, Pinch off voltage, V |