	11111	
	Ш	

					0.	1 13	1		, ,
Reg. No. :							23	(2:0	

Question Paper Code: 50292

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017 Sixth Semester

Civil Engineering

CE 6601 – DESIGN OF REINFORCED CONCRETE AND BRICK MASONRY STRUCTURES

(Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

30/10/17/ AN

Use of IS 456 and IS 1905 is permitted.

Use M30 Grade of concrete and Fe 415 Steel Wherever required.

Answer ALL questions.

PART - A

 $(10\times2=20 \text{ Marks})$

of brick to 10 Minum?

- 1. What is the function of retaining wall?
- 2. What is called surcharge?
- 3. What are the forces acting on walls of water tanks.
- 4. What is a ring beam?
- 5. Mention the standard requirement for rise and tread of residential buildings and public building.
- 6. When do you prefer box culverts?
- 7. What are the characteristics of yield line?
- 8. What are upper bound and lower bound theorems?
- 9. List out the types of bricks masonry walls.
- 10. What are the permissible stresses to be considered for the design of brick column?

RE Industri

 $(5\times16=80 \text{ Marks})$

PART - B

11. a) Design a T-shaped cantilever retaining wall to retain earth embankment 3m high above ground level. The embankment is surcharged at an angle of 16° to the horizontal. The unit weight of earth is $18kN/m^3$ and its angle of repose 30° . The safe bearing may be taken 100kN/m² at a depth of 1m below the ground. The coefficient of friction concrete and soil may be taken as 0.5.

(OR)

- b) Design a counterfort retaining wall to retain 7m high embankment above ground level. The foundation is to be taken 1 m deep where the safe bearing capacity of soil may be taken as 180kN/m². The top earth retained is horizontal and soil weighs 18kN/m³ with an angle of internal friction is 30°. Coefficient of friction between concrete and soil may be taken as 0.5. (16)
- 12. a) Design an underground tank of size $12m \times 5m \times 4m$ depth. The angle of repose of soil 30° and density of soil is 16 kN/m³. The soil is saturated. (16)Descriper use (OR) What Shall Be all his adversary to about 10RM and I

- b) Design a circular tank flexible base for capacity of 4 lakh litres of water. (16)
- 13. a) Design a dog-legged stair for the following data:

Height of floors = 3.4 m

The size of stair case = $4.3 \text{m} \times 4.3 \text{ m}$

Live load = 2.5 kN/m^2

(16)

(OR)

- b) Design an interior panel of flat slab $5.6 \text{ m} \times 6.6 \text{ m}$ to carry a live load of 7 kN/m². Provide two way reinforcement.
- 14. a) Design a simply supported rectangular slab of 4 m \times 5 m to carry a load of 5kN/m², if the slab is isotropically reinforced using yield line theory. (16)

- b) Calculate the ultimate moment of resistance of a simply supported slab $6m \times 4.5 m$ which is reinforced using 8 mm diameter bars spaced at 100 mm c/c. The thickness of slab is 125 mm. Also calculate ultimate collapse load from first principles. (16)
- 15. a) Design a brick wall to carry a load of 40 kN/m. The height of wall is 3m. Strength of brick is 10 N/mm². Use cement mortar ratio 1:6.

b) Determine the allowable axial load on brick masonry column 300 mm × 500 mm constructed using cement mortar of 1:6. The height of column is 5 m. strength of brick is 9N/mm². (16)