Reg. No. 07/11/16

EN

Question Paper Code: 80608

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2016

Third Semester

Civil Engineering

MA 6351 – TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS
(Common to all branches except Environmental Engineering, Textile Chemistry,
Textile Technology, Fashion Technology and Pharmaceutical Technology)
(Regulations 2013)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Find the PDE of all spheres whose centers lie on the x-axis.
- 2. Find the complete integral of $\frac{z}{pq} = \frac{x}{q} + \frac{y}{p} + \sqrt{pq}$.
- 3. State the Dirichlet's conditions for a function f(x) to be expanded as a Fourier series.
- 4. Expand f(x) = 1, in $(0, \pi)$ as a half-range sine series.
- 5. State the assumptions in deriving one-dimensional wave equation.
- 6. State the three possible solutions of the one-dimensional heat flow (unsteady state) equation.
- 7. State change of scale property on Fourier transforms.
- 8. Find the infinite Fourier sine transform of $f(x) = \frac{1}{x}$
- 9. State convolution theorem on Z-transform.
- 10. Find $Z\left[\frac{1}{n(n+1)}\right]$.

PART B
$$-$$
 (5 × 16 = 80 marks)

- 11. (a) (i) Find the partial differential equations of all planes which are at a constant distance 'k' units from the origin. (8)
 - (ii) Solve the Lagrange's equation $x(z^2-y^2)p+y(x^2-z^2)q=z(y^2-x^2)$.(8)
 - (b) (i) Form the PDE by eliminating the arbitrary functions 'f' and ' φ ' from the relation $z = x f\left(\frac{y}{x}\right) + y \varphi(x)$. (8)
 - (ii) Solve $(D^2 + DD' 6D'^2)z = y \cos x$. (8)
- 12. (a) (i) Expand $f(x) = x^2$ as a Fourier series in the interval $(-\pi, \pi)$ and hence deduce that $1 + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \dots = \frac{\pi^4}{90}$. (8)

(ii) Obtain the constant term and the coefficient of the first sine and cosine terms in the Fourier expansion of y as given in the following table:

 x
 0
 1
 2
 3
 4
 5

 y
 9
 18
 24
 28
 26
 20

Or

- Expand $f(x) = e^{-\alpha x}$, $-\pi < x < \pi$ as a complex form Fourier series. (8) (b)
 - $f(x) = \begin{cases} x, & 0 < x < 1 \\ 2 x, & 1 < x < 2 \end{cases}$ as a series of cosines in the interval (0,2). (8)
- A tightly stretched string of length T with fixed end points is initially at 13. rest in its equilibrium position. If it is set vibrating by giving each point a velocity $y_t(x,0) = v_0 \sin\left(\frac{3\pi x}{l}\right) \cos\left(\frac{\pi x}{l}\right)$, where 0 < x < l. Find displacement of the string at a point, at a distance x from one end at any instant 't'. (16)
 - A square plate is bounded by the lines x=0, x=20, y=0, y=20. Its faces are insulated. The temperature along the upper horizontal edge is given by u(x,20) = x(20-x), 0 < x < 20, while the other three edges are kept at 0°C. Find the steady state temperature distribution u(x, y) in the plate.
- Find the Fourier transform of $f(x) = \begin{cases} 1 |x|, & |x| < 1 \\ 0, & |x| > 1 \end{cases}$ and hence 14. (a) deduce that $\int_0^\infty \left[\frac{\sin t}{t} \right]^4 dt = \frac{\pi}{3}$. (8)
 - Find the infinite Fourier sine transform of $f(x) = \frac{e^{-ax}}{x}$ hence deduce the infinite Fourier sine transform of $\frac{1}{x}$. (8)
 - Find the infinite Fourier transform of $e^{-a^2x^2}$ hence deduce the (b) (i) infinite Fourier transform of $e^{-x^2/2}$ (8)
 - Solve the integral equation $\int_0^\infty f(x) \cos \lambda x \, dx = e^{-\lambda}$, where $\lambda > 0$. (ii) (8)
- 15. (i) (a) (4+4)
 - (i) Find (1) $Z[n^3]$ (2) $Z[e^{-t}t^2]$. (ii) Evaluate $Z^{-1}\left[\frac{9z^3}{(3z-1)^2(z-2)}\right]$, using calculus of residues. (8)
 - Using convolution theorem, evaluate $Z^{-1} \left| \frac{z^2}{(z-a)(z-b)} \right|$. (b) (8)
 - Using Z-transform, solve $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$ given that $y_0 = y_1 = 0$. (8)