15. (a) Let y[n]=x[n]*h[n]

where
$$x[n] = \left(\frac{1}{3}\right)^n u[n]$$
 and

$$h[n] = \left(\frac{1}{5}\right)^n u[n]$$

Find y(z) by using the convolution property of z-transform and find y[n] by taking the inverse transform of y(z) using the partial fraction expansion method.

Or

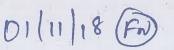
(b) A causal DT LTI system is described by the difference equation

$$y[n-2] - \frac{7}{10}y[n-1] + \frac{1}{10}y[n] = x[n]$$

Determine the system function H(z). Also plot the pole-zero plot and determine whether the system is stable.

PART C
$$(1 \times 15 = 15 \text{ marks})$$

16. (a) Given the impulse response of a discrete time LTI system


$$h[n] = \left[-2 \left(\frac{1}{3} \right)^n + 3 \left(\frac{1}{2} \right)^n \right] u[n]$$

- (i) Find the system function H(z) of the system
- (ii) Find the difference equation representation of the system
- (iii) Find the step response of the system.

Or

(b) The input output relationship of a discrete time system is given by $y[n] - \frac{1}{4}y[n-1] = x[n].$ Find the response y[n] if the Fourier transform of the input x[n] is given as $X(e^{jw}) = \frac{1}{1 - \frac{1}{2}e^{-jw}}$.

25073

			111 57	
Reg. No.:		5		

Question Paper Code: 25073

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2018.

Third Semester

Electronics and Communication Engineering

EC 8352 — SIGNALS AND SYSTEMS

(Common to : Electronics and Telecommunication Engineering/ Medical Electronics/ Biomedical Engineering/ Computer and Communication Engineering)

(Regulations 2017)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

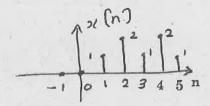
PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- Give the mathematical and graphical representations of a discrete time ramp sequence.
- 2. Evaluate the following integral

$$\int_{-1}^{1} (2t^2 + 3) \, \delta(t) \, dt.$$

- 3. State Dirichlet's conditions.
- If $X(j\Omega)$ is the Fourier transform of the signal x(t), what is the Fourier transform of the signal x(3t) in terms of $X(j\Omega)$?
- 5. If the system function $H(s)=4-\frac{3}{s+2}$; Re(s)>-2, find the impulse response h(t).
- Two systems with impulse response $h_1(t) = e^{-2t} u(t)$ and $h_2(t) = \delta(t-1)$ are connected in series. What is the overall impulse response h(t) of the system?

7. A continuous time signal x(t) has the following real Fourier transform:


$$X(j\Omega) = \begin{cases} 1, |\Omega| \le 10\pi \\ 0, \text{ otherwise} \end{cases}$$

Is x(t) band limited? If so, find the Nyquist rate.

- 8. The DTFT of a discrete time signal x(n) is given as $X(e^{jw}) = 2e^{2jw} + 3 + 4e^{-jw} 2e^{-2jw}$. Find the time domain signal x(n).
- 9. The input x(n) and output y(n) of a discrete time LTI system is given as $x(n)=\{1, 2, 3, 4\}$ and $y(n)=\{0, 1, 2, 3, 4\}$. Find the impulse response h(n).
- 10. Given the system function $H(z) = \frac{z^{-1}}{z^{-2} + 2z^{-1} + 4}$. Find the difference equation representation of the system.

PART B —
$$(5 \times 13 = 65 \text{ marks})$$

11. (a) A discrete time signal x(n) is shown below:

Plot the following signals:

	0 0.			4-1
(i) $x[n-$	21	4 1 1		(2)

(ii)
$$x[n+1]$$
 (2)

(iii)
$$x[-n]$$

$$(iv) \quad x \left[-n+1 \right] \tag{2}$$

$$(v) x[2n]$$

(vi)
$$x[-2n+1]$$
. (3)

Or

(b) A continuous time system has the input-output relation given by y(t)=tx (t-1)

Determine whether the system is

12. (a) Find the Fourier transform of $x(t)=e^{-a|t|}$, a>0 and sketch its corresponding magnitude spectrum.

0

- (b) Find the Laplace transform of $x(t) = e^{-a|t|}$, a > 0 and its associated ROC and indicate whether the Fourier transform $X(j\Omega)$ exists.
- 13. (a) Find the output y(t) of the system

$$H(s) = \frac{1}{s+2} \text{ Re } \{s\} > -2$$

for the input $x(t) = e^{-3t} u(t)$.

Or

- (b) A causal LTI system satisfies the linear differential equation

$$\frac{d^{2}}{dt^{2}}y(t) + 7\frac{d}{dt}y(t) + 12y(t) = \frac{d}{dt}x(t) + 2x(t)$$

- (i) Find the frequency response $H(j\Omega)$ of the system. (6)
- (ii) Find the output y(t) of the system for the input $x(t) = e^{-2t} u(t)$. (7)
- 14. (a) Let $X(e^{jw})$ be the Fourier transform of the sequence x[n]. Determine in terms of x[n] the sequence corresponding to the following transforms using the properties of DTFT. Also prove the properties used.

$$(i) X(e^{j(w-w_0)}) (3)$$

(ii)
$$X^*(e^{-jw})$$
 (3)

(iii)
$$j \frac{d}{dw} X(e^{jw})$$
 (3)

(iv)
$$\frac{1}{2\pi}X_1(e^{jw}) \otimes X_1(e^{jw})$$
 (4)

Oı

(b) Derive the z-transform of the following sequence

 $x[n] = \sin(w_0 n) u[n]$

Also specify its ROC.