

Reg. No. :							2100
------------	--	--	--	--	--	--	------

Question Paper Code: 90065

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2019

Second Semester Mechanical Engineering

BE 8253 – BASIC ELECTRICAL, ELECTRONICS AND INSTRUMENTATION ENGINEERING

(Common to Aeronautical Engineering/Aerospace Engineering/Automobile
Engineering/Industrial Engineering/Industrial Engineering and Management/
Manufacturing Engineering/Marine Engineering/Material Science and
Engineering/Mechanical Engineering (Sandwich)/Mechanical and Automation
Engineering/Mechatronics Engineering/Production Engineering/Robotics and
Automation Engineering)

(Regulations 2017)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions

PART - A

(10×2=20 Marks)

- A stove element draws 15 A when connected to a 120 V line. How long does it take to consume 30 kJ.
- 2. Write the Mesh equation for the circuit shown in Figure 1.

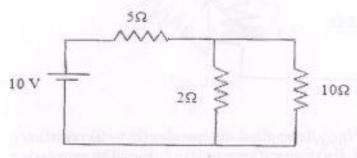


Fig. 1

- 3. Define Apparent power and power factor.
- 4. Explain the concept of balanced load.
- Name the parts of a Transformer.
- 6. Explain how you would reverse the direction of rotation of a D.C. shunt motor.
- 7. What is intrinsic semiconductor?
- 8. Define the term drift current.

- 9. What are the desirable features of a transducer?
- 10. List the classifications of instruments.

PART - B

(5×13=65 Marks)

11. a) Using mesh analysis, determine the current through 1Ω resistor in the given circuit shown in Figure 11.a. (13)

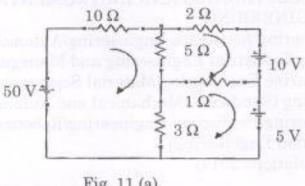


Fig. 11 (a)

(OR)

b) Find the value of R_L at which maximum power is transferred to R_L and hence the maximum power transferred to R_L in the circuit shown in Figure 11.b. (13)

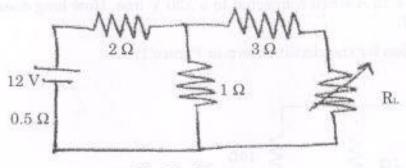


Fig. 11 (b)

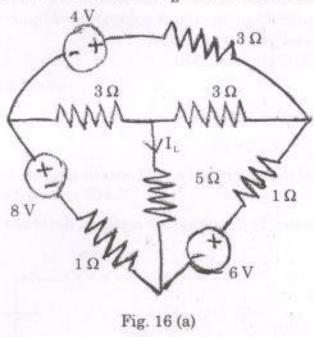
12. a) A 50 Hz, A.C. voltage of 150 $V_{(rms)}$ is applied independently to (i) resistance of 10 Ω (ii) Inductance of 0.2 H, (iii) Capacitance of 50 μ F. Find the expression for the instantaneous current and draw the phasor diagram in each case. (13)

(OR)

- b) Explain three phase circuits in star and delta connection with necessary phasor diagrams and equations. (13)
- a) Derive the EMF equation of a D.C. generator and explain the working principle of DC generator. (13)

(OR)

b) Discuss the principle of operation of a three phase Induction motor. (13)



- a) Explain the mechanism of avalanche breakdown and zener breakdown. (13)
 - b) Discuss using a neat diagram, the principle and working of NPN transistor in CE configuration. (13)
- 15. a) Explain with a neat sketch, the working of dynamometer type wattmeter. (13)
 - Explain with necessary diagram, the working principle of a digital storage oscilloscope. Discuss its advantages over analog CRO. (9+4)

PART - C

(1×15=15 Marks)

16. a) Determine the current I, in the circuit shown in Figure 16.a.

(OR)

b) Determine the current through the 2 ohm resistor in the following network shown in Figure 16. b using Thevenin's theorem.

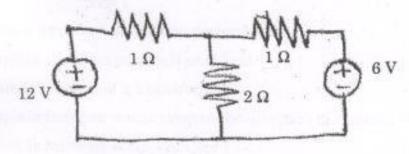


Fig. 16 (b)