	P	 		
Reg. No.:				
1008.110				

Question Paper Code: 71725

B.E./B.Tech. DEGREE EXAMINATION, APRIL/MAY 2017.

Third Semester

Electronics and Communication Engineering

EC 6302 — DIGITAL ELECTRONICS

(Common to Mechatronics Engineering, Robotics and Automation Engineering)

(Regulations 2013)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. Convert the given decimal numbers to their binary equivalent 108.364, 268.025.
- 2. Show how to connect NAND gates to get an AND gate and OR gate?
- 3. Draw the truth table and the logic circuit of half adder.
- 4. Compare the function of Decoder and Encoder.
- 5. Derive the characteristic equation of a D flip flop.
- 6. What is the primary disadvantage of asynchronous counter?
- 7. How does ROM retain information?
- 8. Differentiate between PAL and PLA.
- 9. What are the steps for the analysis of asynchronous sequential circuit?
- 10. What is the significance of state assignment?

PART B —
$$(5 \times 13 = 65 \text{ marks})$$

11. (a) A using K map find the MSP form of
$$F = (0-3, 12-15) + d(7, 11)$$
. (13)

(b) (i) State and prove De Morgon's theorem. (3)

(ii) Find a MinSOP and MinPOS for

$$F = \overline{b}\overline{c}d + bcd + ac\overline{d} + \overline{a}\overline{b}c + \overline{a}b\overline{c}d. \tag{10}$$

12.	(a)	Imple	ement $Y = (A + C) (A + \overline{D}) (A + B + \overline{C})$ using NOR gates only. (13)					
			Or					
	(b)	(i)	Why does a good logic designer minimize the use of NOT gates?	(3)				
	7	(ii)	Show that if all the gates in a two-level AND-OR gate networks replaced by NAND gates the output function does not change. (are (10)				
13.	(a)	Desig	gn and explain the working of a synchronous mod-3 counter. ((13)				
	(b)	Using 000,	g SR flipflops design a parallel counter which counts in the sequent 111, 101, 110, 001, 010, 000,	nce (13)				
14.	(a)	(i)	Compare static RAM and Dynamic RAM.	(3)				
		(ii)		10)				
			$z1 = a\overline{b}\overline{d}e + \overline{a}\overline{b}\overline{c}\overline{e} + bc + de$					
			$z2 = \overline{a}\overline{c}e$					
			$z3 = bc + de + \overline{c} \overline{d} \overline{e} + bd$ and					
			$z4 = \overline{a}\overline{c}e + ce$ using a5*8*4 PLA.					
			Or	1000				
	(b)	(i)	Distinguish between Boolean addition and binary addition.	(3)				
		-	Design a combinational circuit using a ROM that accepts a 3 number and generates an output binary number equal to square of the given number.	bit the 10)				
15.	(a)	(i)	Summarize the design procedure for a synchronous sequent					
		(ii)		(3)				
			Or	Ĥ.				
	(b)	the	is the objective of state assignment in a asynchronous circuit? Grant hazard free realization for the Boolean function, $C, D = M(0, 2, 6, 7, 8, 10, 12)$.					
			PART C — (1 × 15 = 15 marks)					
16.	(a) .	A sequential machine has one input line where 0's and 1's are being incident. The machine has to produce a output of '1' only when exactly two '0's are followed by a '1' or exactly two '1's are followed by a '0'. Using any state assignment and JK flipflop, synthesize the machine. (15)						
			Or					
10	(b)		an expression for the following function using Quiue McClusc ad $F = (0, 2, 3, 5, 9, 11, 13, 14, 16, 18, 24, 26, 28, 30)$. (1	ky (5)				
		- 4						