- 15. (a) (i) A random process X(t) is the input to a linear system whose impulse response is $h(t) = 2e^{-t}$; $t \ge 0$. If the autocorrelation function of the process is $R_{xx}(\tau) = e^{-2|\tau|}$, find the power spectral density of the output process y(t).
 - (ii) If the input to a time invariant stable line system is a WSS process then prove that the output will also be a WSS process. (8)

Or

- (b) (i) If y(t) is the output process when an input process x(t) is applied to the linear time invariant system with impulse response. The autocorrelation function of the output system is $S_{yy}(w) = |H(w)|^2 S_{xx}(w)$, where H(w) is the system transfer function. (8)
 - (ii) A linear time invariant system has an impulse response $h(t) = e^{-\beta t}u(t)$. Find the output autocorrelation function $R_{yy}(\tau)$ corresponding to an input x(t).

4 80609

TO NT.				
Reg. No.	. 1000			
2008.2.00				

Question Paper Code: 80609

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2016.

Fourth Semester

Electronics and Communication Engineering

MA 6451 — PROBABILITY AND RANDOM PROCESSES

(Common to Biomedical Engineering, Robotics and Automation Engineering)
(Regulations 2013)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. A random variable X is known to have a distribution function $F(x) = u(x) \left[1 e^{-x^2/b} \right]$, where b > 0 is a constant. Determine its density function.
- 2. Find the expected value of the discrete random variable X with the probability mass function $p(x) = \begin{cases} \frac{1}{3} & ; x = 0 \\ \frac{2}{3} & ; x = 2 \end{cases}$
- 3. Can Y = 5 + 2.8x and x = 3 0.5y be the estimated regression equations of y on x respectively explain your answer.
- 4. The joint probability density function of the random variable x and y is defined as $f(x,y) = \begin{cases} 25e^{-5y}; & 0 < x < 0.2, y > 0 \\ 0 & \text{otherwise} \end{cases}$. Find the marginal PDFs of x and y.
- 5. Let $A = \begin{pmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ be a stochastic matrix. Check whether it is regular.
- Prove that random telegraph process $\{Y(t)\}$ is a wide sense stationary process.
- Prove that auto correlation function is an even function of τ .

- 8. Find the power spectral density of the random process $\{X(t)\}$ whose auto correlation is $R(\tau) = \begin{cases} -1; & -3 < \tau < 3 \\ 0; & \text{otherwise} \end{cases}$.
- 9. When a system is said to be stable?
- 10. Assume that the input X(t) to a linear time invariant system is white noise. What is the power spectral density of the output process Y(t) if the system response H(w) is $H(w) = \begin{cases} 1 & w_1 < |w| < w_2 \\ 0 & \text{otherwise} \end{cases}$.

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

- 11. (a) (i) If the probability of success is $\frac{1}{100}$, how many trials are necessary in order that the probability of atleast one success is greater than $\frac{1}{2}$? (8)
 - (ii) Find the moment generating function of Gamma distribution, with one parameter K and hence find its mean and variance. (8)

Or

- (b) (i) A and B shoot independently until each has his own target. The probability of their hitting the target at each shot is $\frac{3}{5}$ and $\frac{5}{7}$ respectively? Find the probability that B will require more shots than A. (8)
 - (ii) If \log_e^x is normally distributed with mean 1 and variance 4, find $P(\frac{1}{2} < x < 2)$ given that $\log_e^2 = 0.693$. (8)
- 12. (a) (i) Given the following bivariate probability distribution obtain
 - (1) Marginal distributions of x and y
 - (2) Conditional distribution of x given y = 2. (8)
 - (ii) Find the coefficient of correlation between industrial production and export using the following data. (8)

Production (x): 55 56 58 59 60 60 62

Export (y): 35 38 37 39 44 43 44

Or

(b) Given the joint density function of x and y as $f(x,y) = \begin{cases} \frac{1}{2}xe^{-y}; & 0 < x < 2, & y > 0 \\ 0 & elsewhere \end{cases}$. Find the distribution X + Y. (16)

- 13. (a) (i) The process X(t) whose probability distribution under certain condition is given by $P[X(t)=n]=\begin{cases} \dfrac{(at)^{n-1}}{(1+at)^{n+1}}; & n=1,2,3...\\ \dfrac{at}{1+at}, & n=0 \end{cases}$ Show that it is not a stationary process.
 - (ii) Customers arrive at a grocery store in a Poission manner at an average rate of 10 customers per hour. The amount of money that each customer spends is uniformly distributed between \$ 8.00 and \$ 20.00. What is the average total amount of money that customers who arrive over a two-hour interval spend in the store? What is the variance of this total amount? (8)

Or

- (b) (i) The transition probability matrix of the Markov chain $\{X_n\}$ with n=1,2,3. having 3 states 1,2,3 is $P=\begin{pmatrix} 0.1 & 0.5 & 0.4 \\ 0.6 & 0.2 & 0.2 \\ 0.3 & 0.4 & 0.3 \end{pmatrix}$ and the initial distribution is $P^{(0)}=(0.7\ 0.2\ 0.1)$. Find $P(x_2=3)$ and $P(x_3=2,x_2=3,x_1=3,x_0=2)$.
 - (ii) Find the aute correlation function of random telegraph process. (8)
- 14. (a) (i) If $X(t)=5\sin(\omega t+\phi)$, $y(t)=2\cos(\omega t+\phi)$ and ϕ is a random variable distibuted in $(0,2\pi)$ where ω is a constant and $0+\phi=\frac{\pi}{2}$ find $R_{xx}(\tau), R_{yy}(\tau)$ and verify the property that autocorrelation function is an even function of τ . (8)
 - (ii) Find the spectral density of WSS random process $\{X(t)\}$ whose auto correlation function is $e^{\frac{-\alpha^2r^2}{2}}$. (8)

Or

- (b) (i) If X(t) and Y(t) are WSS random processes then prove that $\left|R_{xy}(\tau)\right| \leq \sqrt{R_{xx}(0).R_{yy}(0)}$. (8)
 - (ii) If the power spectral density of a WSS is given by $S(\omega) = \begin{cases} \frac{b}{a}(a |w|) & |w| \le a \\ 0 & |w| > a \end{cases}$, find the autocorrelation function of the process.