| E43844 105 | 10000 | 25.1 | 2123 | | | | |------------|-------|------|------|---------|-----|-----| | Reg. No. | | | 1 1 | - 1 - 1 | 1 1 | - 1 | | Leck 140. | | 1 1 | | | | | Question Paper Code: 57281 2/6/16 B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016 Third Semester Electronics and Communication Engineering EC 6302 - DIGITAL ELECTRONICS (Common to Mechatronics Engineering and Robotics and Automation Engineering) (Regulations 2013) Time: Three Hours Jaximum: 100 Marks Answer ALL questions. PART - A (10 × 2 = 20 Marks) 1. Prove the Boolean theorems: (a) x + x = x (b) x + xy = x - Define Noise margin. - Write the design procedure of combinational circuit. - 4. Draw the combinational circuit that converts 2 coded inputs into 4 coded outputs. - 5. Differentiate synchronous and asynchronous sequential circuits. - 6. Give the truth table of transparent latch. - 7. Give the classification of programmable logic devices. - 8. How the bipolar RAM cell is different from MOSFET RAM cell? - 9. What is Hazard? Give its types. - 10. Define critical race and give the methods for critical-race free state assignment. 57281 | | | | PART - B (5 × 16 = 80 marks) | 4 | | | | | |-----|------|---|--|------|--|--|--|--| | 11. | (a) | Simplify the following Boolean function F, using Quine Mccluskey method and verify the result using K-map $F(A, B, C, D) = \Sigma(0, 2, 3, 5, 7, 9, 11, 13, 14)$ (16) | | | | | | | | | 373 | | Question Proper (80 les 57281 | | | | | | | | (b) | (i) | Draw and explain Tri-state TTL inverter circuit diagram with it operation. | (10) | | | | | | | | (ii) | Implement the following function using NAND and inverter gates. | (6) | | | | | | | | | F = AB + A'B' + B'C | | | | | | | | | 9 | | | | | | | | 12. | (a) | (i) | Design a 4-bit magnitude comparator with 3 outputs : A > B, A = I | 3, | | | | | | | | | A. < B. | (8) | | | | | | | | (ii) | Design a 4 bit binary to gray code converter. | (8) | | | | | | | | | OR | | | | | | | | (b) | (i) | Implement the following Boolean function using 8×1 Multiplexers. | | | | | | | | | | $F(A, B, C, D) = \Sigma(1, 3, 4, 11, 12, 13, 14, 15)$ | (8) | | | | | | | | (ii) | Explain the concept of carry look ahead adder with neat logic diagram. | (8) | | | | | | 13. | (a) | Des | ign a 3-bit synchronous counter using D-flip flop. | (16) | | | | | | | | | OR | | | | | | | | (le) | (1) | Design and explain the 4 hit SISO SIBO BISO and BIBO shift register wa | th | | | | | (ii) Realize D flip-flop using SR flip-flop. (12) (4) 57281 14. (a) (i) Implement the following function using PLA. (12) F1 $(x, y, z) = \Sigma m (1, 2, 4, 6)$ $F2 (x, y, z) = \Sigma m (0, 1, 6, 7)$ F3 $(x, y, z) = \Sigma m (2, 6)$ (b) (i) Explain memory READ and WRITE operation with neat timing diagram. (8) (ii) Explain the organization of ROM with relevant diagrams. 15. (a) Design an asynchronous sequential circuit with two inputs \mathbf{X}_1 and \mathbf{X}_2 and with one output Z. When X_1 is 0, the output Z is 0. The first change in X_2 that occurs while X_1 is 1 will cause output Z to be 1. The output Z will remain 1 until X_1 returns to 0. OR (b) Construct the transition table, state table and state diagram for the more sequential circuit given below.