	(b)	(i) Construct 6T based SRAM cell. Explain its read and write operations. What is the importance of Cell ratio and Pull up ratio in 6T SRAM cell? . (8)										
		(ii) Analyze the impact of spatial variations of clock signal on edge- triggered sequential logic circuits. (5)										
14.	(a)	Design an 8-bit Brent-Kung Adder. (13)										
		Or										
	(b)	(i) Construct 4 × 4 Array type multiplier and find its critical path delay. (8)										
		(ii) Design 4-input and 4-output barrel shift adder using NMOS logic. (5)										
15.	(a)	Explain CLB of Xilinx 4000 architecture. (13										
		Or										
	(b)	(i) Realize the function, $F = A.B + (B'C) + D$ using ACTEL (ACT-1) FPGA. (5)										
		(ii) Draw the flow chart of digital circuit design techniques. (4)										
20		(iii) Differentiate between Hard Macro and Soft Macro. (4)										
		PART C — (1 × 15 = 15 marks)										
16.	(a)	Derive an expression to show the drain current of MOS for various operating region. Explain one non-ideality for each operating region that changes the drain current. (15)										
- 1	V	Or										
	(b)	Explain in detail the CMOS manufacturing process. (15)										

D . NI.							
Reg. No.:	V						
-							

Question Paper Code: 20421

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2018.

Sixth/Seventh/Eighth Semester

Electronics and Communication Engineering

EC 6601 — VLSI DESIGN

(Common to Electrical and Electronics Engineering, Biomedical Engineering, Electronics and Instrumentation Engineering, Medical Electronics, Robotics and Automation engineering)

(Regulations 2013)

(Also Common to PTEC 6601 — VLSI Design for B.E. (Part-Time) Fifth Semester – Electronics and Communication Engineering and Third Semester – Electrical and Electronics Engineering – Regulation 2014)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- I. Why NMOS device conducts strong zero and weak one?
- 2. Draw the stick diagram of static CMOS 2-input NAND gate.
- 3. Determine the discharging time of the circuit shown in Figure-1. when switch 'A' is closed.

Assume C_L and internal capacitances C_1 and C_2 are charged initially. Let $C_L = C_1 = C_2 = C \,.$

Fig 1

- Realize X = B + C and $Y = (A \cdot (B + C))$ using multiple output domino stages.
- List out the advantages and limitations of 3 T DRAM over 1 T DRAM.
- List out the advantage of C²MOS logic based register over pass-transistor logic based master-slave register.
- The circuit in Fig.2 shows a carry propagation path in an adder circuit. Let A.B.C. are the inputs to adder circuit and φ is the clock signal. Write the logic expressions for the signal X, Y to generate output carry.

Fig. 2

- Draw a 4-bit ripple carry adder and find its critical path delay.
- Compare between Xilinx CLB interconnect and Alter a LAB interconnect.
- Differentiate between full custom design and semi custom design.

PART B —
$$(5 \times 13 = 65 \text{ marks})$$

- List out the goals of CMOS technology scaling. Explain How common electric field scaling is superior than constant voltage scaling.
 - (ii) Derive the expression to obtain the minimum delay through the chain of CMOS inverter.

- Explain the design techniques that are used for larger fan-in devices to reduce delay.
 - (ii) Draw the small signal model of device during cut-off, linear and saturation region.
- Implement the equation $X = \overline{(A+B)CD}$ using complementary 12. (a) (i) CMOS logic.
 - (1) Size the devices so that the output resistance is the same as that of an inverter with an NMOS W/L = 4 and PMOS
 - What are the input patterns that give the worst case t_{PHL} and t_{PLH} . Consider the effect of the capacitances at the internal

- (3) If P(A=1)=0.5, P(B=1)=0.2, P(C=1)=0.3, P(D=1)=1, determine the power dissipation in the logic gate. Assume $V_{DD} = 2.5V$, $C_{out} = 30 fF$ and $F_{clk} = 250$ MHz.
- (ii) List out the limitations of pass transistor logic. Explain any two techniques used to overcome the drawback of pass transistor logic design.

- Explain in detail the signal integrity issues in dynamic logic design. propose any two solutions to overcome it.
 - (ii) (1) Determine the truth table for the circuit shown Figure-3. What logic function does it implement?
 - If the PMOS were removed, would the circuit still function correctly? Does the PMOS transistor serve any useful purpose?

Fig 3

Identify the type of register for the circuit shown in figure 4 and express set up time, hold time and propagation delay of register in terms of the propagation delay of inverters and transmission gates.

Fig. 4

(ii) Implement the register of question 13(i) using C2MOS logic and explain how 0-0 and 1-1 overlap of clock signals are eliminated. (8)

Or