

¥.		T	60163
Reg. No.:			211 3 070

Question Paper Code: 50473

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017 Third Semester

Electrical and Electronics Engineering
EE 6301 – DIGITAL LOGIC CIRCUITS

(Common to Electronics and Instrumentation Engineering/Instrumentation and Control Engineering)
(Regulations 2013)

Time: Three Hours of the second to be a strong to the second to the seco

Maximum: 100 Marks

Answer ALL questions

PART - A

 $(10\times2=20 \text{ Marks})$

- 1. Convert $(115)_{10}$ and $(235)_{10}$ to hexadecimal numbers.
- 2. What is a gray code and mention its advantages.
- 3. What is a K-map?
- 4. Compare decoder and demultiplexer.
- 5. What do you mean by race around condition in a flip-flop?
- 6. What is a preset table counter and ripple counter?
- 7. What happens to the information stored in a memory location after it has been read and write operation?
- 8. What is Programmable Logic Array?
- 9. Define modularity.
- 10. What are the languages that are combined together to get VHDL language?

				PART – B	(5×13=65 N	(Iarks
11.	a)	Explain in deta	il about error (OR)	detecting and error	correcting code.	(13)
	b)	Write short note i) RTL	es on following ii) DTL	g: iii) TTL and	iv) ECL	(13)
12		K-map; obta	ain the simplife function Y =	ied expression from	$+A\overline{B}C+AB$ on a 4-variabethe map.	(7)
huik	b)	Design a 4-bit g	ray code to bir	nary converter and e	express using logic gates.	(13)
13.		Explain the ope master-slave JF		liagram and charac	teristics of T-flip-flop and	(13)
	b)	Explain in deta	il about differ	ent shift registers.		(13)
14.		Discuss about to eliminate the	m.		ential circuit and the way	(13)
	11		(OR)			
	-	I) Write short rI) What is haze		and PAL. hazards in digital o	circuits.	(7) (6)
15.		Write a VHDL o structural mode	eling.		behavioural modeling and	(13)
	ы	I) Diagram buis	(OR)	a in MIDI		(0)
				realization of clock	ed SR flin-flop	(6) (7)
			_		(1×15=15 M	
	a) :	Design an asynoutput Z. Initial	chronous sequely, both input es 1. When the stays at 0 un	ential circuit with t s are equal to zero. \ second input also be	two inputs x_1 and x_2 and on When x_1 or x_2 becomes 1, the comput chang each to the initial state.	ne he
	L)	I) Dogies - C-11	(OR)	V 1		1
	D)	draw the logi		× 1 multiplexer, al	so write its truth table and	d (8)
	I	I) Describe leve	el triggering a	nd edge triggering.		(7)