

Automatic Subtitle Encoder Using

Machine Translation

PREMKUMAR A

MUKESHWAR S (715517104041)

in partial fulfillment for the award of the degree

BACHELOR OF ENGINEERING

COMPUTER

PSG INSTITUTE OF TECHNOLOGY AND APPLIED RESEARCH,

COIMBATORE

ANNA UNIVERSITY: CHENNAI

Automatic Subtitle Encoder Using

Machine Translation

A PROJECT REPORT

 Submitted by

PREMKUMAR A (715517104044)

MUKESHWAR S (715517104041)

in partial fulfillment for the award of the degree

 of

BACHELOR OF ENGINEERING

IN

COMPUTER SCIENCE AND ENGINEERING

PSG INSTITUTE OF TECHNOLOGY AND APPLIED RESEARCH,

COIMBATORE - 641062

ANNA UNIVERSITY: CHENNAI - 600 025

APRIL 2021

PSG INSTITUTE OF TECHNOLOGY AND APPLIED RESEARCH,

i

ANNA UNIVERSITY: CHENNAI - 600 025

BONAFIDE CERTIFICATE

Certified that this project report “Automatic Subtitle Encoder Using Machine

Translation” is the bonafide work of “PREMKUMAR A (715517104044) and

MUKESHWAR S (715517104041)” who carried out the project work under my

supervision.

SIGNATURE SIGNATURE

Dr. R. MANIMEGALAI Dr. S. BHUVANA

HEAD OF THE DEPARTMENT SUPERVISOR

PROFESSOR ASSOCIATE PROFESSOR

Department of Computer Science Department of Computer Science

and Engineering and Engineering

PSG Institute of Technology and PSG Institute of Technology and

Applied Research Applied Research

Neelambur, Coimbatore-641 062 Neelambur, Coimbatore-641 062

Submitted for the project viva-voce Examination held on ________________

----------------------------------- -----------------------------------
INTERNAL EXAMINER EXTERNAL EXAMINER

ii

ACKNOWLEDGEMENT

 First and foremost, we express our deep sense of gratefulness to our respected

Managing Trustee, Shri. L. GOPALAKRISHNAN for his provision to utilize all the

necessary facilities in the institution.

We express our heartfelt gratitude to our beloved Principal of our institution,

Dr. G. CHANDRAMOHAN B.E(Hons), M.Tech, Ph.D, for his overwhelming support

and encouragement on this project. We would also like to extend our heartfelt thanks to

our honorable Secretary Dr. P. V. MOHANRAM B.E(Hons), M.Tech, Ph.D, for his

moral support.

We are greatly indebted to Head of the Department Computer Science and

Engineering, Dr. R. MANIMEGALAI M.E., Ph.D, for her guidance and continuous

support which was instrumental in the completion of this project.

We extend our thanks to our guide, Dr. S. BHUVANA M.E., Ph.D for her

guidance and constant supervision without which we could not have completed this

project study.

We would further like to thank our project coordinator Mr. S. THIVAHARAN

M.Tech, for carrying out reviews smoothly and the valuable feedback provided at each

step of the project development.

Finally, I take this opportunity to extend my humble gratitude to Almighty

without the blessings of whom we would not have been able to overcome the challenges

posed by this project study.

 PREMKUMAR A
 MUKESHWAR S

iii

PLAGIARISM REPORT (VERIGUIDE)

iv

ABSTRACT

In the present scenario, video plays a crucial role to help people understand and

comprehend the information. It becomes important to make videos available to the

people having auditory problems and even more for the people to remove gaps of their

native language. According to the Eighth Schedule of Indian Constitution, India consists

of around 22 languages. To remove the above problems, we can make use of subtitles

for the respective video. Traditionally, people use to download and load subtitles for any

other language videos/movies from the internet. Downloading subtitles from the internet

is a monotonous process and at times, people find it difficult to search for subtitles in

every language. Automatic Subtitle Generation is an undergoing subject of research.

Hence, this project undergoes three distinct modules namely Audio Extraction which

converts input video file of any MPEG standard format to audio file of .flac format with

the help of Psycho-Acoustic Model. Then Speech Recognition of the extracted audio file

and finally, Subtitle Generation in which Sub Ripped Text File is generated which can

be synchronized with the respective video file. For now, project is able to generate

subtitles for 66 languages with high accuracy. In future, we tend to generate .srt files for

other native languages.

Keywords : SubRip Subtitle, Psycho-Acoustic, Machine Translation, Cloud API

v

TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.

 ABSTRACT iv

 LIST OF TABLES x

LIST OF FIGURES viii

LIST OF ABBREVIATIONS ix

1. INTRODUCTION 1

1.1 OBJECTIVE 2

1.2 SCOPE AND MOTIVATION 2

1.3 PROPOSED METHODS 2

1.3.1 Different Approaches 3

 1.4 CONTRIBUTION OF THE PROJECT 5

2. LITERATURE SURVEY 6

2.1 EXISTING MODELS 6

2.2 DRAWBACKS ON EXISTING MODEL 8

3. SYSTEM DESCRIPTION 11

3.1 SOFTWARE AND HARDWARE

REQUIREMENTS 11

3.2 PACKAGES USED 11

3.2.1 Six 11

3.2.2 Subprocess 12

3.2.3 xlwt 12

3.2.4 ffmpeg 12

3.2.5 time 13

3.2.6 xlsxwriter 13

3.2.7 tkinter 13

3.2.8 ntpath 13

vi

CHAPTER NO. TITLE PAGE NO.

3.2.9 shlex 14

3.2.10 PIL 14

3.2.11 Google_OAuth 14

3.3 GOOGLE CLOUD API 14

4. SYSTEM DESIGN 15

4.1 DESIGN OVERVIEW 15

4.2 USE CASE DIAGRAM 18

4.3 MODULES DESCRIPTION 19

 4.3.1 Audio Extraction 19

 4.3.2 Speech Recognition 20

 4.3.3 Subtitle Generation 21

5. IMPLEMENTATION 23

5.1 AUDIO FEATURE EXTRACTION 23

5.2 SPEECH TO TEXT RECOGNITION 24

5.2.1 Configuration Setup 26

5.2.2 Recognition Methods 28

5.2.3 Processing Response 29

5.2.4 Sentence Formation 31

5.3 SPEECH TRANSLATION 31

6. TESTING 33

6.1 TESTING STRATEGIES 33

6.1.1 Unit Testing 34

6.1.2 Integration Testing 34

6.1.3 System Testing 34

6.1.4 Acceptance Testing 35

6.2 VALIDATION 35

6.3 LIMITATIONS 35

vii

CHAPTER NO. TITLE PAGE NO.

6.4 TEST RESULTS 35

 7. RESULT ANALYSIS 36

 7.1 GRAPHICAL USER INTERFACE 36

 7.1.1 Home Screen 36

 7.2 SUBTITLE GENERATION 37

 7.2.1 Processing Video File 37

 7.2.2 Speech Recognition 38

 7.2.3 Machine Translation 39

 7.3 SRT FILE 40

 7.4 FINAL OUTPUT 41

8. CONCLUSION & FUTURE ENHANCEMENT 42

8.1 CONCLUSION 42

8.2 FUTURE ENHANCEMENTS 42

APPENDIX

REFERENCES

viii

LIST OF FIGURES

FIGURE NO. TITLE PAGE NO.

1.1 Machine Translation Approaches 3

2.1 Block diagram for Direct Machine Translation 8

3.1 FFmpeg package processing input video 12

4.1 Block Diagram for subtitle generator 15

4.2 Use case diagram for user inputs 18

4.3 Activity diagram for Audio Extraction 19

4.4 Block diagram for Speech Recognition 20

4.5 Activity Diagram for Subtitle Generation 22

5.1 Audio Feature Extraction from Video 23

5.2 Transcribing Multimedia Content 24

5.3 Google Speech to Text Recognition API 30

5.4 Processed Response from Subtitle Encoder 30

5.5 Google API Speech Translation 31

5.6 Languages that exists in Subtitle Encoder 32

6.1 Software Development Life Cycle Testing Phase 33

7.1 Encoder’s Home Screen 36

7.2 Audio Feature Extraction 37

7.3 Speech to Text Recognition 38

7.4 Machine Translation from source to target 39

7.5 Generated SubRipped Subtitle File 40

7.6 Embedded Subtitle within Source File 41

ix

LIST OF ABBREVIATIONS

 ABBREVIATION DESCRIPTION

 API Application Programming Interface

 ASR Automatic Speech Recognition

 DDL Dynamic Link Library

 GUI Graphical User Interface

 HMM Hidden Markov Model

ICACCS International Conference on Advanced

Computing and Communications System

ICAML International Conference on Applied ML

 LSTM Long Short Term Memory

 MPEG Moving Pictures Expert Group

 PCM Pulse Code Modulation

 REST Representational State Transfer

 RNN Recurrent Neural Networks

 SRT SubRip Subtitle File

 TTS Text to Speech

 URL Uniform Resource Locator

 WER Word Error Rate

 XML Extensible Markup Language

 IDE Integrated Development Environment

x

LIST OF TABLES

TABLE NO. TITLE PAGE NO.

 2.1 Bit rate and Average size comparison for 7

given sample codec

1

CHAPTER 1

INTRODUCTION

In this Information Age Era, Language has become the information carrier and

most significant for humans to communicate and it is also the barrier of communications

between people. In the present scenario, video plays a crucial role to help people

understand and comprehend the information. It becomes crucial and mandatory to make

videos available to the people having auditory problems and also for the people to

remove gaps of their native language. According to the Eighth Schedule of Indian

Constitution, India consists of around 22 languages. To remove all above problems, the

subtitles can be embedded for the respective video. Traditionally, people use to

download and load subtitles for any other language videos/movies from the internet.

Downloading subtitles from the internet is a monotonous process and at times, people

find it difficult to search for subtitles in every language. Subtitles provide information

for individuals who have difficulty understanding the speech and auditory components

for the visual. This explains a valid area of research.

At present, Users download the sub ripped subtitle file from the internet to

synchronize with the respective video. The file format should be .srt, it does not take

other formats as it will not synchronize with the video file. The sub ripped subtitle file

comprises time stamps and texts that are spoken by the video component. There are no

services or software that provide necessary sub ripped subtitle files automatically in user

needed language. It will be available only if anyone intends to generate a .srt file

manually. This project undergoes three distinct modules namely Audio Extraction which

converts input video file of any MPEG standard format to audio file of .flac format with

the help of Psycho-Acoustic Model. Then Speech Recognition of the extracted audio file

and finally, Subtitle Generation in which Sub Ripped Text File is generated which can

be synchronized with the respective video file. Several methods are developed using

Long Short Term Memory (LSTM) – a special kind of recurrent neural networks.

Implementation of these networks resulted in a need for more processing power and

more time.

2

1.1 Objective

 To help people having auditory problems and to make people understand and

comprehend the information. Subtitles play a major role in solving these problems.

Subtitle creation by humans manually is tedious. Automatic Subtitle Encoder will help

to generate subtitles in user requested language and can embed with the video file. The

idea of Multithreading is used to provide a high level of synchronization without getting

any subtitle delay.

1.2 Scope and Motivation

 Without Subtitle Encoder, people find it tedious to search for necessary language

subtitles from the internet. Upon implementation of Subtitle Encoder, people can able to

generate their target language subtitle whenever they need. Subtitle Encoder will cover

all major languages that are spoken by people all over the world. Easy user interface will

help people to choose whatever language the user prefers.

1.3 Proposed Methods

The core function of the subtitle encoder is Machine Translation. It can be

simplified into three methods: the analysis of source language text, conversion of source

language text to target language text and generation of target language. The main issue

in Machine translation is the accuracy of respective language translation. In fact, the

methodology adopted by the machine translation system will affect the accuracy.

Machine Translation can be done in three methods: Human Translation with machine

support, Machine translation with human support and fully automated translation.

1.3.1 Different approaches

There are three popular approaches for performing machine translation: (a) Rule

Based Machine Translation, (b) Empirical Machine Translation and (c) Hybrid Based

Machine Translation as shown in Fig. 1.1

Figure 1.1

A. Rule Based Machine Translation

Rule based or Literal Translation or Word Based Translation or Dictionary Based

Translation is that the words will be translated as a dictionary does word by word,

usually without much correlation of meaning betw

only for a selective pair of languages and is not versatile. This method is further divided

into three classifications: Direct Machine Translation, Transfer based Machine

Translation and Interlingua Machine Translation.

mapped with corresponding words of target language. In Transfer MT, analysis of a

source sentence is done at first and corresponding target sentences are produced.

Transfer Machine Translation uses both bilingual dictio

perform conversion. In Interlingua MT, first the source language is analyzed and

converted to an Interlingua language, the source language is converted to target

language.

3

 Machine Translation Approaches

Rule Based Machine Translation

Rule based or Literal Translation or Word Based Translation or Dictionary Based

Translation is that the words will be translated as a dictionary does word by word,

usually without much correlation of meaning between them. This method is applicable

only for a selective pair of languages and is not versatile. This method is further divided

into three classifications: Direct Machine Translation, Transfer based Machine

Translation and Interlingua Machine Translation. In Direct MT, the source sentence is

mapped with corresponding words of target language. In Transfer MT, analysis of a

source sentence is done at first and corresponding target sentences are produced.

Transfer Machine Translation uses both bilingual dictionaries and grammatical rules to

perform conversion. In Interlingua MT, first the source language is analyzed and

converted to an Interlingua language, the source language is converted to target

Rule based or Literal Translation or Word Based Translation or Dictionary Based

Translation is that the words will be translated as a dictionary does word by word,

een them. This method is applicable

only for a selective pair of languages and is not versatile. This method is further divided

into three classifications: Direct Machine Translation, Transfer based Machine

In Direct MT, the source sentence is

mapped with corresponding words of target language. In Transfer MT, analysis of a

source sentence is done at first and corresponding target sentences are produced.

naries and grammatical rules to

perform conversion. In Interlingua MT, first the source language is analyzed and

converted to an Interlingua language, the source language is converted to target

4

B. Empirical Machine Translation

This approach treats machine translation as a process of information transmission,

using a channel model to interpret machine translation. The main idea is about

translation of an entire sentence into equivalent suitable sentences of the required

language. This method is further divided into two classifications: Statistical Machine

Translation and Example Based Machine Translation. In Statistical MT, Statistic-

primarily based device translation may be divided into the subsequent aspects: version

issues, schooling issues and interpreting trouble. The version trouble is to set up a

chance version for device translation, that is, to outline the Calculation approach of the

chance of sentence translation from the supply language to the goal language. Training

trouble is to utilize the corpus to get all of the parameters of this version. The

interpreting trouble is to discover the most chance translation for any sentence of supply

language on the premise of the acknowledged fashions and parameters. In Example MT,

The bilingual case library is the primary source of information for case-based machine

translation. The main challenge is to optimize statistics and build a bilingual case library.

Case-based machine translation has a major impact for the same or similar text

translation, and its function has grown in importance as the size of the sentences library

has grown.

C. Hybrid Based Machine Translation

Hybrid Machine Translation that characterizes the use of multiple machine

translations to produce respective language sentences. It achieves a satisfactory level of

accuracy with the use of multiple machines. It is a combination of statistical and neural

to obtain more accuracy. When it comes to hybrid machine translation, the multi-

engine translation method involves running several machine translation systems in

parallel. The cumulative output of all the subsystems involved in the process is

normally used to produce the final output. Multi engine translation approaches are

typically used in rule-based and statistical frameworks. With the help of many machine

translators, the output efficiency can be achieved greater. This can also leads to

decrease in efficiency since failure or poor translation in one translator might affect the

5

systems entire performance. One has to think properly and choose appropriate

translators to build Hybrid based machine translation model. Coming up with

complexity and space restrictions, this model might not good suggestion as the

complexity gets increases on addition of every new translator into the Hybrid based

machine translation model. Thus, if efficiency and accuracy is more important than

space and complexity, users can prefer to choose HMT models.

1.4 Contribution of the Project

Automatic Subtitle Encoder will help people who are suffering from auditory

problems and help people to understand the concepts crisp and clear. Subtitles help

people to solve the gaps between native speakers. Translation by people can’t meet the

demand of society. Hence, the use of subtitle encoder will generate the needed subtitle

whenever the user intends to understand the video concepts. Machine Translation also

helps people when a user has more amounts of user generated content that needs to be

translated quickly. Some examples of user generated content include, online comments,

customer review on certain products and social media posts. With the advent of foreign

trade and business among many countries, translators play an important role to

communicate among many nations. Encoders are on-demand machines in the upcoming

days as these machines are light weighted, minimalistic in design and has user friendly

interface. Anyone with no prior knowledge can also use this encoder because of its

simplicity.

6

CHAPTER 2

LITERATURE SURVEY

Machine Translation is the way of converting from source language to target

language. It is one of the most active research areas in natural language processing

where industries are driving to get useful sights from customer reviews so that they can

market their product accordingly. Subtitle Generation is one of the dominant

applications of Machine Translation.

2.1 Existing models

 Mathur A et al.,[1] proposed a model framework on "Generating Subtitles

Automatically Using Audio Extraction and Speech Recognition" and published a paper

at IEEE International Conference on Computational Intelligence & Communication

Technology. The model does conversion from video file of any MPEG format to audio

format of MP3 as first phase followed by generating subtitles in English language. This

model also provides synchronization of subtitles along with the video file. This model

can convert into various global languages such as English, French, and German. It has

achieved an accuracy of about 75%.

 Lero R D et al., [11] proposed a model on "Communications using a speech-to-

text-to-speech pipeline" and conducted International Conference on Wireless and

Mobile Computing, Networking and Communications. This model explains the

feasibility of an automated Speech to speech to encode the voice message than encoding

the regular voice codecs. To analyze the

Advantages of the above speech to text and text to speech pipeline transcript and

compare it against standard Pulse Code Modulation (PCM), the error rate of user

transcribed sentences based on Semantically Unpredictable Sentences test. The use of a

speech to speech pipeline has been used multiple times to provide translation service and

provides assistance in Software as a Service Platform. Pipeline consists of the speech

recognition phase and speech synthesis phase. The entire process is modularization as

the components can be reused for future use. The concept of modularization also helps

7

to couple and decouple components based on user need. Due to complexity involved in

speech conversion and to achieve time constraint, Users intend to use third party cloud

service platforms such as Amazon Web Services, Google Cloud Platform and Microsoft

Azure helps to execute speech translation in much easier and time efficient manner.

Idea is to convert the text stream messages into speech samples using a method called

Text to Speech API (TTS). The average size of all samples in the set and various

encoding standards which illustrates the amount of bandwidth consumed when

compressed using TTS method as shown in Table 2.1

 Table 2.1 Bit rate and Average size comparison for given sample codec

CODEC SIZE OF SAMPLE BIT RATE

SPEEX 2495 7912

PCM 20232 64136

OPUS 3390 10960

STS 32 105

Converted sentences are then measured for their Word Error Rate. It explains how much

of the ground truth sentence had to be changed to obtain the hypothesis sentence.

Satpathy et al., [12] proposed a model on “Analysis of Learning Approaches for

Machine Translation Systems'' in the International Conference on Applied Machine

Learning (ICAML). It explains an analytical study on machine translation with lexical

and structural ambiguity. It resolves the gap between programmers or developers and

linguists can be resolved with this system. While developing these systems, there exists

few lexical ambiguity, linguistic ambiguity and structural and synonymic ambiguity. To

develop a proper bilingual system one need to analyze the sentence and also the

technology behind the machine which translates the source to target language.

Systran is one of the examples for a literal machine translation system. Initially, it

converts only language from Russian to English. The simple architecture of literal or

direct Machine Translation is shown in Fig 2.1

8

 Figure 2.1 Block Diagram for Direct Machine Translation

 Ramani A, et al .,[2] proposed a model on "Automatic Subtitle Generation for

Videos" and conducted an International conference on Advanced Computing and

Communication Systems (ICACCS). The main objective of the project is to choose a

suitable Speech Recognition Engine such that while designing a video player to

synchronize the subtitle, it will adopt properly. The proposed model comprises three

active modules: (a) Audio Extractor, (b) Speech Recognition Engine and (c) Subtitle

Synchronization. The chosen data set to test this model is Mozilla Common Voice Data

Set as it has a good intermix of different speakers from various countries around the

world. The data set comprises video lectures of around 1,000 hours and having a test and

train split of 3:7 ratio.

 Rizwan Sheikh et al ., [5] extracted audio from the video and converted the video

into wav file format. His model has performed a gold size reduction of around 24%. The

audio processing is done using chunks and feeds the output into the CMU Sphinx engine

for speech recognition. It takes three inputs: psycho acoustic model, language model and

dictionary.

K. M. Chaman Kumar et al, [12] "A Survey of Machine Translation Approaches”

focus on producing subtitles for hearing impaired people. The flow of processes consist

of Object identification, Image Annotation, Video Annotation, Automatic Speech

Recognition (ASR) and parallel processing on the audio file. There are various forms of

Speech recognition Engines available. Some of the themes include Deep Speech and

PocketSphinx. Deep Speech works under recurrent neural networks (RNN). It is an open

9

source Speech to Text engine which has been implemented using Baidu’s Deep Speech

research paper. The Recurrent Neural Network works bidirectional with recurrent layers

of two groups of hidden layers where one layer is for forward recurrence and another for

backward recurrence. Pocket Sphinx uses Hidden Markov Model (HMM) works based

on the given audio input. Hidden Markov Model follows the use of transition

probabilities to compute an overall probability to reach a particular given state model. In

the case of Sphinx, the inputs calculated against the transition probability matrix are

evaluated. This evaluated result is called “Phones”.

There are three independent models that are used to solve speech recognition tasks

which are in tandem.

 Psycho Acoustic model that contains properties of each senome. A detector

object to check for the presence of a phone in utterance is called a senome.

 A dictionary that contains a mapping feature between words and sequence

of phones.

 A language model for restricting search context whenever a partial sentence

is identified which helps in increasing the speed and computation.

The average word error rate for PocketSphinx is 20% and for Deep Speech is about

15.75%. Thus, Sphinx performs better than Deep Speech Translation Engine.

The word Rate metric has been used to help us quantitatively compare various

approaches. This approach is similar to the Machine Translation method of error rate

calculation or loss function calculation. Word Error Rate (WER) can be calculated as,

 Word Rate Error =
ூାାௌ

ே
 (1)

Where I represents Number of words in a sentence

 D represents Number of words deleted in a sentence

 S represents Number of words substituted in a sentence

 N represents Total number of words in a sentence

Deep Speech requires a large amount of data set and consumes more memory even when

it is idle with only the model loaded. Deep Speech offers a tool to map with the memory

10

and model and it may paint a better picture when compared to other models. A product

like this can target regions as it consumes more bandwidth and availability of internet is

tandem in some regions.

 Kehai Chen et al .,[11] published a paper on “Towards more diverse input

representation for Neural Machine Translation” which states how source information

plays an important role in transformation based translation system.Word Embedding and

positional Embedding are added as input representation. Transformation based

translation systems rely mainly on self Attention Networks (SAN).

 Ozan, [15] published a paper on "Increasing system performance in machine

learning by using multiprocessing," in 26th Signal Processing and Communications

Applications Conference where he states that system’s performance can be abruptly

increased when we have multiple CPU cores working parallely on different instructions

in particular given clock cycle.

 H. Arif et al., [6] and his colleagues published an paper on "A Comparison

between Google Cloud Service and iCloud" in IEEE 4th International Conference on

Computer and Communication Systems (ICCCS) stating that there will evolution in

cloud technologies. People will get confuse to choose which cloud service provider.

Absolutely, Apple product users has much more benefit when they use iCloud. They

provide enough synchronization methodologies. But, for android users, they can prefer

Google cloud since google has ownership with android. Each users has their own

benefits with their own platform service providers.

2.2 Drawbacks on Existing Models

 The models explained above have conversion only for their own native languages.

The accuracy obtained from the above models is lesser than 80%. For implementation

with the help of neural networks, it takes more time than the respective original video

length. This will make the users feel uncomfortable in using these models. It will

eventually spend time in searching for sub ripped subtitle file.

11

CHAPTER 3

SYSTEM DESCRIPTION

3.1 Software and Hardware Requirements

Software Requirements

● Operating System : Windows 7 and higher versions,

Any Linux distributions.

● Language : Python 3.0

● Packages Used : six, subprocess, xlwt, xlrd, ffmpeg, time,

xlswriter, ntpath, tkinter, shlex, pysrt,PIL,

google_OAuth

Hardware Requirements

● RAM : 6GB (recommended) and more

● Processor : Intel Core i5 and more

● Disk capacity : 500 KB (Minimum) and more

● Speed : 1GHZ and more

3.2 Packages Used

3.2.1 Six

 Six provides simple and minimalistic utilities for wrapping over

differences between Python 2.x pipeline and Python 3.x pipeline. It is intended to

support various codebases that work on both Python 2.x pipeline and 3.x pipeline

without any modification. Six python packages consist of only one python file and it is

easy to import into any project whenever it is necessary. The name, “six”, comes from

normal mathematical multiplication that 2*3 equals 6. Since, “five” has already been

snatched away, now all developers are using six tool.

3.2.2 Subprocess

 Subprocess package intends to replace several modules in python 2 and 3

are os.system and os.spawn. This module allows users to spawn new processes and also

connect with input or output or error pipes and retain their codes. To invoke any

subprocess use run() function for all use cases. This subprocess module also has another

method .CompletedProcess which

3.2.3 xlwt

 xlwt library helps developers to write data and format data and information

to older Excel files of format .xls The xlwt package has a Workbook class representing

the workbook and all its content. Instantiate this workbook object to create a new

workbook. To add a sheet in the object workbook instance, use the add_sheet method

which takes two parameters as sheet name and cell_overwrite_ok. To save a file, use the

.save method to save it as a workbook file.

3.2.4 ffmpeg

 Python can be wrapped along with FFmpeg to work with complex graphs.

This package is forked from github repository. Various filters have been included in the

FFmpeg standard to produce accurate results.

 Figure 3.1 FFmpeg p

3.2.5 time

 This module helps various time related functions. It comprises two modules

such as datetime and calendar modules. Most of the functions are built in with C library

functions. There are several functions availab

struct_time(), local_time(), mktime() etc.

12

connect with input or output or error pipes and retain their codes. To invoke any

subprocess use run() function for all use cases. This subprocess module also has another

method .CompletedProcess which returns process id that has been finished already.

xlwt library helps developers to write data and format data and information

to older Excel files of format .xls The xlwt package has a Workbook class representing

tent. Instantiate this workbook object to create a new

workbook. To add a sheet in the object workbook instance, use the add_sheet method

which takes two parameters as sheet name and cell_overwrite_ok. To save a file, use the

orkbook file.

Python can be wrapped along with FFmpeg to work with complex graphs.

This package is forked from github repository. Various filters have been included in the

FFmpeg standard to produce accurate results.

Figure 3.1 FFmpeg package processing input video

This module helps various time related functions. It comprises two modules

such as datetime and calendar modules. Most of the functions are built in with C library

functions. There are several functions available such as .gmtime(), strptime(),

struct_time(), local_time(), mktime() etc.

connect with input or output or error pipes and retain their codes. To invoke any

subprocess use run() function for all use cases. This subprocess module also has another

returns process id that has been finished already.

xlwt library helps developers to write data and format data and information

to older Excel files of format .xls The xlwt package has a Workbook class representing

tent. Instantiate this workbook object to create a new

workbook. To add a sheet in the object workbook instance, use the add_sheet method

which takes two parameters as sheet name and cell_overwrite_ok. To save a file, use the

Python can be wrapped along with FFmpeg to work with complex graphs.

This package is forked from github repository. Various filters have been included in the

ackage processing input video

This module helps various time related functions. It comprises two modules

such as datetime and calendar modules. Most of the functions are built in with C library

le such as .gmtime(), strptime(),

13

3.2.6 xlsxwriter

 This python module is used for writing into Excel files of version above

2007 and above. This uses file extension format as xlsx. It can be used to write numbers,

formulae, text and hyperlinks to various worksheets/workbooks. It supports certain

features like charts, formatted cells, auto fillers, merged cells, textboxes, support for

adding macros, integration with pandas, data validation and drop down lists and

provides 100% compatible Excel XLSX files.

3.2.7tkinter

 This package is a standard python interface for Tk Graphical User Interface

(GUI) toolkit. Both Tk and Tkinter are available for any operating systems. Tk is

maintained at ActiveState which is not a part of python. In the Tk interface module, it

includes a number of python GUI modules and it is usually a shared library or Dynamic

Link Library(DLL). It comprises several modules like canvas, Tk.button, Tk.window,

Tk.Text Box etc.., The pack() method is used to couple the entire components within the

canvas or window object. This implementation should run indefinitely because it renders

the screen based on the user progress.

3.2.8 ntpath

 ntpath module helps with the path/location functionality of the respective

file in any operating system. To read a file or to write a file, a user can use the open()

function and for accessing the operating system’s file system we can use os module. The

high level path objects can be provided by using the pathlib module. Several other

functions include exists(), lexists(), isfile(), ismount() etc… posixpath can be used for

UNIX machines whereas ntpath can be used for Windows Machines.

3.2.9 shlex

 The shlex package is used to write lexical analyzers. shlex stands for

Simple Lexical Analysis. It can be used for simple syntaxes and useful for writing mini

languages. It has certain functions like join(), quote() etc… The lexical analyzer object

will be the shlex instance or shlex subclass instance.

14

3.2.10 PIL

 PIL stands for Pillow which is an Python Imaging library for processing

images to match up with the interpreter capabilities. It can be used for fast access to

store data in users' required basic pixel format. It also serves as a general image

processing tool. It has more reference mapping like Image, ImageChops, ImageColor,

ImageDraw, ImagePalette, ImageMorph, ImageShow etc…

3.2.11 google_OAuth

 OAuth is an authentication standard designed exclusively for access

delegation, to authenticate the user to grant requests to websites or access services that

are exposed through Application Programming Interface (API) without giving them

passwords or any credentials. Google_OAuth is used to implement Open Authentication

on Google products API and can be linked with developers' python code.

3.3 Google Cloud API

 Cloud API allows developers to automate tasks such that developers can focus

more on code logic rather than building or designing the software UI. Developers can

communicate with the API using RESTful (REpresentational State Transfer) or XML

(Xtensible Markup Language) to communicate with the backend core logic.

4.1 Design Overview

 The overall abstract view of the project can be seen from the flow diagram

as shown in the figure 4.1.

Figure 4.1 Block diagram for subtitle generator

The input of the video file is given by the user, where encoder has

depends on the user requirements. The subtitle can be of any language.

The input file of the video f

FFMPEG where each audio format gives some typ

should also consider the audio format because speech recognition gives accuracy based

on the audio format in which it has

15

CHAPTER 4

SYSTEM DESIGN

The overall abstract view of the project can be seen from the flow diagram

Block diagram for subtitle generator

is given by the user, where encoder has to generate a subtitle

depends on the user requirements. The subtitle can be of any language.

The input file of the video file is converted into an audio file of any format using

FFMPEG where each audio format gives some type of functionalities and also one

the audio format because speech recognition gives accuracy based

on the audio format in which it has been converted. In this project , primary goal is to

The overall abstract view of the project can be seen from the flow diagram

to generate a subtitle

ile is converted into an audio file of any format using

e of functionalities and also one

the audio format because speech recognition gives accuracy based

en converted. In this project , primary goal is to

16

converting a video file to audio file of FLAC or LINEAR16 format which gives more

accuracy during speech recognition.The audio file undergoes various stages during

converting from video file to audio file where it has to be taken care of lossy

compression, easy to recognize text based on silence and the noise should have been

processed by the FFMPEG, this is why this format is suggested for speech recognition,

It is not that other formats are not supported for speech recognition.

Now the next phase is to convert from audio file to text which is done using the

advanced machine learning algorithm which has been hosted by Google and using the

credentials provided by them. Encoder uses cloud speech-text API for speech

recognition. Before recognition one have to undergo few steps, they are to establish a

connection between our project and Google cloud speech-text API and need to get

configured the request based on the user requirements some of the important parameters

are type of the audio format, the language in which video file is given as input, whether

the video should produce a time offset of start time and end time and audio channel

count which represents the header of the audio format. It varies depending on each audio

format, the header file should reach the audio format which has been specified.

After getting the response from the API encoder have to process the data because

it contains the response of confidentiality, start time, end time, word ,metadata etc.

remove unnecessary data and form a list of words with start time, end time, speaker tag,

language in which it has been recognized. Now with this list of words encoder have to

form a sentence which doesn’t change meaning at any point only then the translation and

the subtitle is generated with high accuracy. For that purpose the sentence formation is

done based on if the word has a time gap of one sec, if the speaker tag is different and if

the sentence exceeds certain time limit then break point should be fixed and appending

into a new list. Finally the list contains the sentence with start time and end time which

has been written into excel file for view purpose. Therefore at this phase the text is

divided into timeframes.

17

The main phase of machine translation is done during this stage where the

translation uses advanced neural networks. Now the text is imported from the file and

read one by one which is given as input to the cloud speech translate API which converts

the text from language to target language and the parameters need to be given are the

credentials to establish connection and use the cloud speech translate API, and the target

language in which it has to be generated. Before doing this we have to check the text is

in the format of string binary or utf-8 because the translation supports utf-8 for this

purpose after importing the input check whether it is a binary or not and convert to utf-8

and pass the processed text to the cloud translate API.

After the translation we have generate the .srt file called “SubRip subtitle”, which

contains the format of

● start time ---> end time

● segment number

● hours : minutes : seconds, milliseconds ----> hours : minutes : seconds,

milliseconds

● new line space

● Divide the translated text into segments and write the file in subtitle format and

save it as .srt file, now merge the file with the video file using FFMPEG and run

the command in prompt using pop method which uses synchronous execution and

ends the program after its execution. Therefore the automatic subtitle generator

using cloud translate API is done.

4.2 USE CASE DIAGRAM:

 The use case diagram represents the different ways of giving input by the user

 as shown in figure 4.2.

18

Figure 4.2 Use case diagram for users input

The various scenario of use case diagram includes,

● Users can input audio/video files.

● While playing a video user can either rewind or forward the video file or increase

or decrease the aspect ratio and play the video file.

● Users can either pause or stop the video file.

● If the user selects the subtitle and plays the video with or without the subtitle.

4.3 MODULES DESCRIPTION

4.3.1 AUDIO EXTRACTION

 The first stage is converting the video file to audio file and the process of

converting them is shown in the activity diagram of figure 4.3.

19

Figure 4.3 Activity diagram for Audio Extraction

This module aims to output an audio file from a media file. It takes as input a file

URL and gives the audio format of the output. Next, it checks the file content and

creates a list of individual tracks composing the initial media file. An exception is

thrown if the file content is irrelevant. Once the tracks are separated, the processor

analyzes each track, selects the first audio track found and discards the rest.

Finally, the audio track is written in a file applying the default or wished format.

In Audio Formats Discussions, it was previously talked about the audio formats that

Sphinx accepts. At the moment, it principally supports WAV or RAW files. Hence, the

task of obtaining the preferred format is complicated. It often requires various treatments

and conversions to reach the mentioned purpose.

For that purpose encoder uses FFMPEG to convert any media file to the audio file

of preferred format where each track is processed separately and the audio format

supported in encoder is FLAC file and Linear16 which uses lossy compression.

20

4.3.2 SPEECH RECOGNITION

 After audio extraction from the video file the task is to recognize the speech of the

audio file and during this recognize various factors need to be considered that is

frequency of the audio file, how clear is the voice of the audio and if there is interruption

in the audio file it need to get pre-processed such that the recognize of the text will be

happen with more accuracy.

 The block diagram for the speech recognition which represents the audio file is

given as the input from that speech signal gets converted to the recognized text as shown

in the figure 4.4.

Figure 4.4 Block diagram for speech recognition

The audio signal is sent to the speech signal preprocessing which removes noise

and any interrupted sounds in that signal. After preprocessing the features gets extracted

that is the frequency and wavelength which has been given as the input to the phonetic

unit recognition. The Phonetic unit recognition uses acoustic modelling for recognition

of the signal frequency and uses the language modelling which uses the language code

given by the input of the audio file and the result of speech recognition is achieved. In

our project the speech recognition of these above phases are built using the cloud speech

to text API.

21

4.3.3 SUBTITLE GENERATION

This module is expected to get a list of words and their respective speech time-

frames from the speech recognition module and then produce a .srt subtitle file. To do

so, the module must look at the list of words and use silence (SIL) spoken words as a

boundary between for two consecutive sentences and also split based on the different

speaker tag.

Subtitle Generation is expected to select the most suitable models considering the

audio and the parameters (category, length, language etc.) given as input by the user and

thereby generate a precise transcript of the audio speech.In this activity diagram shows

how speech is read from real time and recognizing the text and generating the subtitle

for the video file given as input as per the user requirements.

Therefore speech is recognized and subtitles are generated in .srt file. The below

activity diagram for subtitle generation is shown in the figure 4.5

22

Figure 4.5 Activity Diagram for Subtitle Generation

 The part of the activity diagram shows the creation of the subtitle file and the

other half represents the formation of the sentences, that is check the work end time

whether there is a gap of one sec, if then break the sentence and add it into the subtitle

file else continue the work till it ends.Doing all this the subtitle gets generated and if

user want it in our own language in this project encoder uses cloud translate API which

generates the subtitle as per the user requirements.

23

CHAPTER 5

IMPLEMENTATION

Encoder uses python (version 3.0) with anaconda for the implementation of

“Automatic Subtitle Encoder” using google translate API which have been trained with

advanced neural networks. There are various phases involved during this

implementation and deployment of our framework. Among them, audio extraction,

speech recognition and speech translation phase are the main phases. Audio Extraction:

converts an input file of any format supported by MPEG standards to audio format.

Speech Recognition of the extracted audio file is implemented. Speech Translation

where Subtitle Generated in which a.txt/.srt file is generated which is synchronized with

the input video file.

5.1 Audio Feature Extraction

Figure 5.1 Audio Feature Extraction from Video

The input video file passes through demuxer where audio is separated from video

and then, audio stream is divided into frames of binary format. In order to remove noise

from audio streams, a compression algorithm is used with the help of the Psychoacoustic

Model. This model provides lossy compression of the signal. This resulting binary data

is converted to sinusoidal signal to pass as input to muxer where the separated audio

signals are combined together under file extension format.

 #Audio Extraction from a video file

 command="ffmpeg -i "+video_filename.replace(" ","")+" "+video_filename[:length

4].replace(" ","")+".flac"

 Run the command in the s

execution, which uses FFMPEG to convert a video file to audio file with lossy

compression of signal.

5.2 Speech to Text Recognition

Figure 5.2 Transcribing Multimedia Content

 Apply powerful neural community fashions to con

greater than 110 languages and variants. Text effects in actual

dealing with. Helps gadgets that can ship a relaxation or gRPC request. API

consists of time offset values (timestamps) for the start and gives up of every

word spoken in the known audio.

 A handful of applications for speech popularity exist on PyPI. Some of them built

integrated:

 apiai

 assemblyai

 Google-cloud

 pocket sphinx
24

#Audio Extraction from a video file

i "+video_filename.replace(" ","")+" "+video_filename[:length

Run the command in the shell script using pop method which uses synchronous

execution, which uses FFMPEG to convert a video file to audio file with lossy

5.2 Speech to Text Recognition

Transcribing Multimedia Content

powerful neural community fashions to convert speech to text. Recognises

greater than 110 languages and variants. Text effects in actual-Time. A hit noise

dealing with. Helps gadgets that can ship a relaxation or gRPC request. API

alues (timestamps) for the start and gives up of every

word spoken in the known audio.

A handful of applications for speech popularity exist on PyPI. Some of them built

cloud-speech

pocket sphinx

i "+video_filename.replace(" ","")+" "+video_filename[:length-

hell script using pop method which uses synchronous

execution, which uses FFMPEG to convert a video file to audio file with lossy

vert speech to text. Recognises

Time. A hit noise

dealing with. Helps gadgets that can ship a relaxation or gRPC request. API

alues (timestamps) for the start and gives up of every

A handful of applications for speech popularity exist on PyPI. Some of them built

25

 Speech Recognition

 watson-developer-cloud

 A number of those programs—which built integrated wit and apiai—offer

capabilities, like natural language process built-in for built-in integrated a

speaker’s built integrated, which pass beyond simple speech popularity. Others,

like Google-cloud-speech, recognize totally on speech-to-text conversion. There's

one package deal that stands out built-in terms of ease-of-use: Speech

Recognition.

 Built-in spot built integrated speech calls for audio built-in, and Speech

Recognition makes retrieve integrated this built-in built integrated built-in

smooth. as a substitute to get integrated to build scripts for built-in integrated

microphones and process integrated audio files from scratch, Speech Recognition

will have you ever up and jog integrated built-in only some built-in.

 The Speech Recognition library acts as a wrapper for several famous speech APIs

and is for that reason built-in bendy. such a—the Google built integrated Speech

API—helps a default API key that is tough-coded built-into the Speech

Recognition library. Built-in you can get off your toes without having to enroll in

an integrated service.

 The ability and ease-of-use of the Speech Recognition package deal make it an

outstand built integrated choice for any Python venture. But, the guide for every

feature of each API it wraps isn't assured. you will need to spend a while getting

to know the available alternatives to built-in if Speech Recognition will work built

into an integrated unique case.

 Now, the next phase is to convert an audio file to speech, where an extracted

audio file is sent as an input which recognizes words of that language using

Speech Recognition in which the audio undergoes three modules, the Front End,

Decoder and the Knowledge Base.

 Words that have more probability of occurrence get a high score and the one with

lower probability are pruned using the pruner.

 Transcribe your audio and video with subtitles and improve your audience's reach

26

and experience. Add subtitles to your streaming content in real time. Our video

transcription model is ideal for indexing or subtitling videos and / or content from

multiple speakers and uses machine learning technology similar to video

subtitling on YouTube.

5.2.1 Configuration Setup

 The above modules are implemented using machine learning approaches

which have been hosted by a Google cloud called cloud speech to text API.

To do this encoder need to establish a connection with the cloud using the

credentials provided which is in JSON format.

#establishing connection with Google cloud service

Credentials = service_account.Credentials.from_service_account_file(obj)

storage client=storage.Client.from_service_account_json(obj)

Configuration have to be done and the necessary data that we need to provide are

audio language in which language we need to recognize the words, audio format in

which we are providing our input, audio_channel_count in which the audio format

header is requested and time offset which gives the each words with start_time and

end_time.

#Configuration for speech recognition

Parameters:

 encoding=speech.RecognitionConfig.AudioEncoding.XXXX,

 language_code=language,

 audio_channel_count=X,

 enable_word_time_offsets=True

 And there are some more parameters which are to be optional, used to give you

some more additional functionalities. They are,

● sampleRateHertz : Sample rate in Hertz of the audio data file that was sent

in all Recognition Audio content. Valid values are: 8000-48000.16000 is optimal. For

best results, set the audio source sample rate to 16000 Hz. If this is not possible, use the

native sample rate from the audio source (instead of resampling). This parameter is

27

optional for two audio files FLAC and WAV, but it is necessary for all other audio

formats.

● maxAlternatives : Maximum number of detection hypotheses to be

returned. In particular, the maximum number of Speech Recognition Alternative

contents in each Speech Recognition Response. The server can return fewer than max

Alternatives. Valid values are 0-30. A value of 0 or 1 returns a maximum of one. If it is

omitted, a maximum of one is returned.

● useEnhanced : Set to true to use an improved model for speech

recognition. If use Enhanced is set to true and the model field is not set, an appropriate

extended model is selected if there is an extended model for the audio. If use Enhanced

is true and there is no enhanced version of the specified model, the language is detected

using the default version of the specified model.

● Model: Which model to choose for the specified requirement? For the best

results, choose the model that works best for your domain. If a model is not explicitly

specified, encoder automatically select a model based on the parameters in

RecognitionConfig.ModelDescriptioncommand_and_searchBest for short queries such

as voice commands or voice searches. Best for audio coming from a phone call (usually

recorded at a sample rate of 8 kHz). Video Best for audio that comes from video or

contains multiple speakers. Ideally, the audio is recorded at a sampling rate of 16 kHz or

higher. This is a premium model that costs more than the standard plan. By default, best

for audio that is not one of the specific audio models. Example: long format audio.

Ideally, the audio is recorded with high fidelity and a sample rate of 16 kHz or higher.

● enableAutomaticPunctuation : If true, add a score to the recognition

outcome hypotheses. This function is only available in selected languages. Setting it for

requirements in other languages has no effect. The default value of false does not add a

score to the result hypotheses.

● diarizationConfig : Settings for activating speaker diarization and setting

additional parameters to make the diarization more suitable for your application. Note:

When this option is activated, encoder send all the words from the beginning of the

audio to the top alternative in each successive STREAMING response.

28

5.2.2 Recognition Methods

There are three methods in which encoder can process our request. They are,

● Asynchronous Recognition: (REST and gRPC) sends audio file to the

Speech-to-Text API and initiates a long_running_operation. Using this operation, you

can periodically poll for recognition responses. Use asynchronous requests for audio

files of any duration up to 480 minutes.

● Streaming Recognition: (gRPC only) performs recognition on audio file

provided within a gRPC bi-directional. Requests are designed for real-time speech

recognition purposes, such as capturing live audio from a user microphone. Streaming

recognition provides accurate results while audio is being captured, allowing response to

appear, for example, while a user is still speaking.

● Synchronous Recognition: (REST and gRPC) sends audio file to the

Speech-to-Text API, performs speech recognition on that audio file, and returns

response after all audio has been processed. Synchronous recognition requests are

limited only to audio size of 1 minute or less in duration.

#Speech Recognition

operation = client.long_running_recognize(config=config,audio=audio)

result = operation.result()

In this project encoder uses Asynchronous method for recognition. For this

encoder has to upload our audio file in cloud, for storage create bucket in cloud and store

the file by using storage_client method. Using the type recognition the audio file

contains the field of uri which is the pointer to the audio content, which keeps track of

audio file and recognizes each word using cloud speech to text API.

#Bucket creation

-Create Bucket in the cloud with an object.

-Establish connection between bucket and audio.

 -Upload the file.

5.2.3 Processing Response

Once it has been recognized it contains the response containing each word with its

start_time, end_time, confidentiality etc, encoder

the response for further processing. E

Figure 5.3 Google Speech to Text Recognition API Response

5.2.4 Sentence Formation

After extraction, words should combined in such a way which forms a

sentence, for this encoder uses two approach

29

Once it has been recognized it contains the response containing each word with its

nd_time, confidentiality etc, encoder need to extract the necessary data from

the response for further processing. Example response is shown in Fig 5.4

Google Speech to Text Recognition API Response

After extraction, words should combined in such a way which forms a

sentence, for this encoder uses two approach,

Once it has been recognized it contains the response containing each word with its

need to extract the necessary data from

xample response is shown in Fig 5.4

Google Speech to Text Recognition API Response

After extraction, words should combined in such a way which forms a meaningful

 Based on the time gap of one sec.

 Based on different speaker

 Based on if the time e

the sentence for the subtitle

Form sentences with start time and end time an

speech translation.

 The response that we obtain from the subtitle encoder is well processed which

comprise of confidence field along with generated transcript for the given audio source

file. This also consist of start time and end

the sub ripped file for the required video file. The processed response is shown in below

Figure 5.4

Figure 5.4 Processed Response from Subtitle Encoder

30

time gap of one sec.

Based on different speaker tags.

Based on if the time exceeds the certain limit, and then encoder

for the subtitle to be either one or two lines not more than that.

with start time and end time and give the input to the

The response that we obtain from the subtitle encoder is well processed which

comprise of confidence field along with generated transcript for the given audio source

. This also consist of start time and end time parameters which are helpful to generate

the sub ripped file for the required video file. The processed response is shown in below

Figure 5.4 Processed Response from Subtitle Encoder

xceeds the certain limit, and then encoder can break

to be either one or two lines not more than that.

d give the input to the

The response that we obtain from the subtitle encoder is well processed which

comprise of confidence field along with generated transcript for the given audio source

time parameters which are helpful to generate

the sub ripped file for the required video file. The processed response is shown in below

5.3 Speech Translation

Figure 5.5

 The above Figure 5.5 explains the detailed structure and code flow inside Google

API cloud Engine. It explains the necessary steps that undergoes whenever user creates a

record or entry in Google API speech Translation

automated Speech Recognition itself and user need to provide only input audio format

file of respective file format that are available in Google Speech Recognition API.

Speech translation is translating from one langua

encoder have many models in which translation is done with neural networks and

machine learning. Cloud Translation can dynamically translate textual content among

hundreds of language pairs. Translation done through web sites and p

programmatically combines with the translation carrier. In addition to translating text,

detecting supply language, and getting a list of supported languages, the superior version

additionally helps custom glossaries, Batch translation, AutoML fash

 In this project encoder uses

And the model is called NMT (Neural Machine Translation. The translate API

recognition engine which supports a huge variety of languages is made for the Neural

Machine Translation (NMT) model.

The languages are specified within a recognition request using language code as a

parameter in the request into which the language is to be translated. Most language code

31

e 5.5 Google API Speech Translation

The above Figure 5.5 explains the detailed structure and code flow inside Google

API cloud Engine. It explains the necessary steps that undergoes whenever user creates a

record or entry in Google API speech Translation. These are taken care by Google

automated Speech Recognition itself and user need to provide only input audio format

file of respective file format that are available in Google Speech Recognition API.

Speech translation is translating from one language to another language, where

have many models in which translation is done with neural networks and

machine learning. Cloud Translation can dynamically translate textual content among

uage pairs. Translation done through web sites and p

with the translation carrier. In addition to translating text,

detecting supply language, and getting a list of supported languages, the superior version

additionally helps custom glossaries, Batch translation, AutoML fashions, Labels

In this project encoder uses neural network based model for speech translation.

And the model is called NMT (Neural Machine Translation. The translate API

recognition engine which supports a huge variety of languages is made for the Neural

chine Translation (NMT) model.

The languages are specified within a recognition request using language code as a

parameter in the request into which the language is to be translated. Most language code

The above Figure 5.5 explains the detailed structure and code flow inside Google

API cloud Engine. It explains the necessary steps that undergoes whenever user creates a

. These are taken care by Google

automated Speech Recognition itself and user need to provide only input audio format

file of respective file format that are available in Google Speech Recognition API.

another language, where

have many models in which translation is done with neural networks and

machine learning. Cloud Translation can dynamically translate textual content among

uage pairs. Translation done through web sites and packages

with the translation carrier. In addition to translating text,

detecting supply language, and getting a list of supported languages, the superior version

ions, Labels

neural network based model for speech translation.

And the model is called NMT (Neural Machine Translation. The translate API

recognition engine which supports a huge variety of languages is made for the Neural

The languages are specified within a recognition request using language code as a

parameter in the request into which the language is to be translated. Most language code

parameters are compatible with ISO

languages for translation using Cloud Translation or in Basic or Cloud Translation

Advanced APIs. The languages that are available at present are shown in the below

Figure 5.6.

Figure 5.6 Languages that exists in Subti

 The available languages are most spoken by the people all over the world. These

languages are coded along with their specific mnemonic such as for English it is “eu”

And for French it is “Fr”. These encoded mnemonics are obtained and used

universally by all language specific fields. Each mnemonic corresponds only to a

particular language. Thus we can identify any language with the help of mnemonic

itself.

32

e with ISO-639-1 identifiers. You can also list the supported

ation using Cloud Translation or in Basic or Cloud Translation

The languages that are available at present are shown in the below

Languages that exists in Subtitle Encoder

vailable languages are most spoken by the people all over the world. These

languages are coded along with their specific mnemonic such as for English it is “eu”

And for French it is “Fr”. These encoded mnemonics are obtained and used

versally by all language specific fields. Each mnemonic corresponds only to a

particular language. Thus we can identify any language with the help of mnemonic

You can also list the supported

ation using Cloud Translation or in Basic or Cloud Translation

The languages that are available at present are shown in the below

tle Encoder

vailable languages are most spoken by the people all over the world. These

languages are coded along with their specific mnemonic such as for English it is “eu”

And for French it is “Fr”. These encoded mnemonics are obtained and used

versally by all language specific fields. Each mnemonic corresponds only to a

particular language. Thus we can identify any language with the help of mnemonic

Testing is the phase in which a system or its component undergoes c

evaluation with the intent to find whether it has any bug or it will meet the system

requirements. This activity results in the actual, expected and difference between their

results. Testing has many strategies which vary from component to component

6.1 Testing strategies

With the intent of finding errors, the different phases of testing strategies are

applied as shown in Fig 6.1.These strategies are not completely required in all the

software development process.

Figure 6.1 Software Development

33

CHAPTER 6

TESTING

Testing is the phase in which a system or its component undergoes c

evaluation with the intent to find whether it has any bug or it will meet the system

requirements. This activity results in the actual, expected and difference between their

results. Testing has many strategies which vary from component to component

With the intent of finding errors, the different phases of testing strategies are

applied as shown in Fig 6.1.These strategies are not completely required in all the

Software Development Life Cycle Testing Phases

Testing is the phase in which a system or its component undergoes certain

evaluation with the intent to find whether it has any bug or it will meet the system

requirements. This activity results in the actual, expected and difference between their

results. Testing has many strategies which vary from component to component.

With the intent of finding errors, the different phases of testing strategies are

applied as shown in Fig 6.1.These strategies are not completely required in all the

Life Cycle Testing Phases

34

6.1.1 Unit Testing

The primary objective of unit testing is to separate each part of the program and

check whether individual parts are correct in terms of functionality. Each module in the

tool such as audio extraction, speech recognition and machine translation is tested

separately with the help of,

● Video file is given as input to the audio extraction.

● Extracted audio file is given as input to the speech recognition and

● Recognized speech formed as a sentence and given as input to the machine

translation.

6.1.2 Integration Testing

In this testing, the tested unit modules from the unit testing are combined and then

checked for integration testing. The approach followed here is Bottom-up Integration

testing where the smallest modules are tested first and then combined together. Where

video file is converted to audio file (audio extraction) and audio is recognized using

cloud speech to text API (speech recognition) is tested and later the sentence formation

is tested with the list of words and finally the translation, finally all these modules are

tested in a combined manner.

6.1.3 System Testing

This is the next level in the testing and tests the system as a whole. The integrated

tested modules are again combined into a complete software module which is checked

rigorously. The complete system is tested with few video files which are given as input

by the user and tested whether it gives the output as expected.

35

6.1.4 Acceptance Testing

The goal of this acceptance testing is to find whether the software development

model meets the client specification or not. Model has been subjected to both alpha and

beta testing and gathered their feedback. And the project has been tested with feedback

and rectified and worked successfully.

6.2 Validation

All the levels in the testing (unit, integration, system) are implemented in our

application successfully and the results obtained as expected. Validation and

Verification phase are more important in any Software Development Life cycle such as

agile, V model, waterfall model etc… In each project, almost 20 percent of the job use to

be validation and verification. Creators usually release alpha roll out before proceeding

with Validation.

6.3 Limitations

Though the time to recognize the speech from the audio files takes longer for

larger files which are the average of the total length of the video file and for real time

applications it is not come into use.

6.4 Test Results

The alpha testing is done among the team members and the beta testing is done

with the help of college end users. It satisfies the end users requirements and the results

obtained from encoder has an accuracy of about 92.37%.

RESULT ANALYSIS

7.1 Graphical User Interface

7.1.1 Home screen

The first screen will ask the user to choose the path of the video file in the first

textbox or either choose the url of the youtube video file for which the user wants to

generate the subtitle and the user needs to give the source language and the target

language. The entire GUI was created with Python Tkinter. The home screen of our

application is shown in Fig 7.1.

Figure 7.1

36

CHAPTER 7

RESULT ANALYSIS

1 Graphical User Interface

sk the user to choose the path of the video file in the first

textbox or either choose the url of the youtube video file for which the user wants to

generate the subtitle and the user needs to give the source language and the target

I was created with Python Tkinter. The home screen of our

Figure 7.1 Encoder’s Home Screen

sk the user to choose the path of the video file in the first

textbox or either choose the url of the youtube video file for which the user wants to

generate the subtitle and the user needs to give the source language and the target

I was created with Python Tkinter. The home screen of our

7.2 Subtitle Generation

7.2.1 Processing Video file

The next screen from the home screen is based on the user’s choice in the h

screen. After choosing the path from pc the video files gets converted to audio file with

the same name and the format is FLAC else the url gets downloaded from youtube and

gets converted to audio file with same name and format is FLAC. Processing vide

is shown in Fig 7.2.

Figure 7.2

37

The next screen from the home screen is based on the user’s choice in the h

screen. After choosing the path from pc the video files gets converted to audio file with

the same name and the format is FLAC else the url gets downloaded from youtube and

gets converted to audio file with same name and format is FLAC. Processing vide

Figure 7.2 Audio Feature Extraction

The next screen from the home screen is based on the user’s choice in the home

screen. After choosing the path from pc the video files gets converted to audio file with

the same name and the format is FLAC else the url gets downloaded from youtube and

gets converted to audio file with same name and format is FLAC. Processing video file

7.2.2 Speech Recognition

The next phase is that when user

clicking on translate button using the cloud speech to text API the speech is

from the audio file and from the list of words sentences gets formed and for view

purpose the data is put into the excel file which is shown in Fig 7.3

Figure 7.3

38

The next phase is that when user choose the source and target language and after

clicking on translate button using the cloud speech to text API the speech is

from the audio file and from the list of words sentences gets formed and for view

purpose the data is put into the excel file which is shown in Fig 7.3

Figure 7.3 Speech to Text Recognition

choose the source and target language and after

clicking on translate button using the cloud speech to text API the speech is recognized

from the audio file and from the list of words sentences gets formed and for view

7.2.3 Machine translation

 And the last phase is that converting the recognized speech into the

user required target language where encoder checks

and sends this message as input and using a cloud translate API to do this subtitle

generation where the translated text

Figure 7.4 Machine Translation from Source to Target Language

39

e is that converting the recognized speech into the

e where encoder checks the words are in utf

and sends this message as input and using a cloud translate API to do this subtitle

generation where the translated text is shown in fig 7.4

Machine Translation from Source to Target Language

e is that converting the recognized speech into the

the words are in utf-8 format

and sends this message as input and using a cloud translate API to do this subtitle

Machine Translation from Source to Target Language

7.3 SRT file

After the translation encoder has to

which contains the format of

start time ---> end time

segment number

hours : minutes : seconds, milliseconds

milliseconds

new line space

and the custom generated srt file is shown in the fig 7.5.

Figure 7.5

40

After the translation encoder has to generate the .srt file called “SubRip subtitle”,

> end time

hours : minutes : seconds, milliseconds ----> hours : minutes : seconds,

and the custom generated srt file is shown in the fig 7.5.

 Generated SubRip Subtitle File

generate the .srt file called “SubRip subtitle”,

hours : minutes : seconds,

7.4 Final output

 Now the final output subtitle file is merged with the video file using the command

which will run in the shell script using the pop method that uses synchronous method for

its execution which is shown in the fig 7.6

Figure 7.6 Embedded Subtitle within Source Video File

41

subtitle file is merged with the video file using the command

which will run in the shell script using the pop method that uses synchronous method for

its execution which is shown in the fig 7.6

Embedded Subtitle within Source Video File

subtitle file is merged with the video file using the command

which will run in the shell script using the pop method that uses synchronous method for

Embedded Subtitle within Source Video File

42

CHAPTER 8

CONCLUSION

8.1 CONCLUSION

In today’s modern era, language plays a vital role in business needs and

performing trade around the world. And also with the existence of more languages, it

makes it tedious for the user to understand the end users words. Manually, people can

convert from one language to another with the help of people who know both languages.

The state of this process is known as dubbing. But one cannot remember all the

languages that exist in the world. People who have auditory problems also suffer from

watching video files without any audio. Thus, to help people who are suffering from

auditory problems can make use of captions to understand the internal meaning of the

respective video. But, these captions also are made available only in a few languages. To

generate an automatic subtitle or caption generator, users can use this model called

“Automatic Subtitle Encoder”. This encoder helps people to select their desired

language from the list of options that are available. Encoder encodes the respective

source to target language with an accuracy of 90.5%.

8.2 FUTURE ENHANCEMENTS

 Till now, Encoder has encoded only 66 languages. In future, it will be

implemented with all native languages that exist. Encoder generates only sub ripped

subtitle files only. In future, it will search for a suitable source file and embed the srt

file automatically to the video file. Initially, time taken to generate the first instance of

text will be 2 minutes. In the future with the help of the multi threading concept, subtitle

generation time can be reduced. Accuracy will be increased in future to 90% and above.

43

APPENDIX

#Importing necessary library

import six
import subprocess
import ffmpeg
from google.oauth2 import service_account
from google.cloud import translate_v2 as translate
import xlwt
from xlwt import Workbook
import time
import pysrt
import xlrd
import os
from google.cloud import storage
import shlex
import ntpath
import tkinter as tk
from tkinter import
Tk,PhotoImage,filedialog,Canvas,Button,OptionMenu,Label,Text,Entry,ttk
from PIL import Image,ImageTk

#Establishing connection with Google cloud service
obj="XXXXXXXXXXXXXXXXXX.json"
buck_name="<Any_name>"
credentials = service_account.Credentials.from_service_account_file(obj)
storage_client=storage.Client.from_service_account_json(obj)

#Defining available languages
def source(source_input):
 source_language={
"Afrikaans(SouthAfrica)":"af-ZA",
"Arabic(Bahrain)":"ar-BH",
"Arabic(Egypt)":"ar-EG",
"Arabic(Iraq)":"ar-IQ",
"Arabic(Israel)":"ar-IL",
"Arabic(Jordan)":"ar-JO",
"Arabic(Kuwait)":"ar-KW",
"Arabic(Lebanon)":"ar-LB",
"Arabic(Oman)":"ar-OM",
"Arabic(Qatar)":"ar-QA",
"Arabic(Saudi Arabia)":"ar-SA",
"Arabic(State of Palestine)":"ar-PS",

44

"Arabic(United Arab Emirates)":"ar-AE",
"Bengali(Bangladesh)":"bn-BD",
"Chinese,Cantonese(Traditional HongKong)":"yue-Hant-HK",
"Chinese,Mandarin(Traditional,Taiwan)":"zh-TW ",
"Czech(Czech Republic)":"cs-CZ",
"Danish(Denmark)":"da-DK",
"Dutch(Netherlands)":"nl-NL",
"English(Australia)":"en-AU",
"English(Ghana)":"en-GH",
"English(India)":"en-IN",
"English(Nigeria)":"en-NG",
"English(Philippines)":"en-PH",
"English(Singapore)":"en-SG",
"English(South Africa)":"en-ZA",
"English(Tanzania)":"en-TZ",
"English(United Kingdom)":"en-GB",
"English(United States)":"en-US",
"Filipino(Philippines)":"fil-PH",
"Finnish(Finland)":"fi-FI",
"French(Canada)":"fr-CA",
"French(France)":"fr-FR",
"German(Germany)":"de-DE",
"Gujarati(India)":"gu-IN",
"Hebrew(Israel)":"iw-IL",
"Hindi(India)":"hi-IN",
"Indonesian(Indonesia)":"id-ID",
"Italian(Italy)":"it-IT",
"Japanese(Japan)":"ja-JP",
"Kannada(India)":"kn-IN",
"Korean(South Korea)":"ko-KR",
"Malay(Malaysia)":"ms-MY",
"Malayalam(India)":"ml-IN",
"Marathi(India)":"mr-IN",
"NorwegianBokmål(Norway)":"no-NO",
"Persian(Iran)":"fa-IR",
"Polish(Poland)":"pl-PL",
"Portuguese(Brazil)":"pt-BR",
"Portuguese(Portugal)":"pt-PT",
"Russian(Russia)":"ru-RU",
"Serbian(Serbia)":"sr-RS",
"Spanish(Spain)":"es-ES",
"Spanish(United States)":"es-US",
"Swedish(Sweden)":"sv-SE",
"Telugu(India)":"te-IN",
"Thai(Thailand)":"th-TH",

45

"Turkish(Turkey)":"tr-TR",
"Ukrainian(Ukraine)":"uk-UA",
"Urdu(Pakistan)":"ur-PK",
"Vietnamese(Vietnam)":"vi-VN",
"Zulu(South Africa)":"zu-ZA" }
 return source_language[source_input]

def target(target_input):
 target_language={
"Afrikaans":"af",
"Albanian":"sq",
"Amharic":"am",
"Arabic":"ar",
"Armenian":"hy",
"Azerbaijani":"az",
"Basque":"eu",
"Belarusian":"be",
"Bengali":"bn",
"Bosnian":"bs",
"Bulgarian":"bg",
"Catalan":"ca",
"Cebuano":"ceb",
"Chinese(Simplified)":"zh-CN",
"Chinese(Traditional)":"zh-TW",
"Corsican":"co",
"Croatian":"hr",
"Czech":"cs",
"Danish":"da",
"Dutch":"nl",
"English":"en",
"Esperanto":"eo",
"Estonian":"et",
"Finnish":"fi",
"French":"fr",
"Frisian":"fy",
"Galician":"gl",
"Georgian":"ka",
"German":"de",
"Greek":"el",
"Gujarati":"gu",
"Haitian Creole":"ht",
"Hausa":"ha",
"Hawaiian":"haw",
"Hebrew":"he",
"Hindi":"hi",

46

"Hmong":"hmn",
"Hungarian":"hu",
"Icelandic":"is",
"Igbo":"ig",
"Indonesian":"id",
"Irish":"ga",
"Italian":"it",
"Japanese":"ja",
"Javanese":"jv",
"Kannada":"kn",
"Kazakh":"kk",
"Khmer":"km",
"Kinyarwanda":"rw",
"Korean":"ko",
"Kurdish":"ku",
"Kyrgyz":"ky",
"Lao":"lo",
"Latin":"la",
"Latvian":"lv",
"Lithuanian":"lt",
"Luxembourgish":"lb",
"Macedonian":"mk",
"Malagasy":"mg",
"Malay":"ms",
"Malayalam":"ml",
"Maltese":"mt",
"Maori":"mi",
"Marathi":"mr",
"Mongolian":"mn",
"Myanmar(Burmese)":"my",
"Nepali":"ne",
"Norwegian":"no",
"Nyanja(Chichewa)":"ny",
"Odia(Oriya)":"or",
"Pashto":"ps",
"Persian":"fa",
"Polish":"pl",
"Portuguese(Portugal,Brazil)":"pt",
"Punjabi":"pa",
"Romanian":"ro",
"Russian":"ru",
"Samoan":"sm",
"ScotsGaelic":"gd",
"Serbian":"sr",
"Sesotho":"st",

47

"Shona":"sn",
"Sindhi":"sd",
"Sinhala(Sinhalese)":"si",
"Slovak":"sk",
"Slovenian":"sl",
"Somali":"so",
"Spanish":"es",
"Sundanese":"su",
"Swahili":"sw",
"Swedish":"sv",
"Tagalog(Filipino)":"tl",
"Tajik":"tg",
"Tamil":"ta",
"Tatar":"tt",
"Telugu":"te",
"Thai":"th",
"Turkish":"tr",
"Turkmen":"tk",
"Ukrainian":"uk",
"Urdu":"ur",
"Uyghur":"ug",
"Uzbek":"uz",
"Vietnamese":"vi",
"Welsh":"cy",
"Xhosa":"xh",
"Yiddish":"yi",
"Yoruba":"yo",
"Zulu":"zu" }
 return target_language[target_input]

#function to generate automatic subtitle based on user requirements

def subtitle_gen(gcs_uri,language,to_language,video_filename,output_filename):
 #Configuration done + Speech recognition
 from google.cloud import speech
 client = speech.SpeechClient(credentials=credentials)
 audio = speech.RecognitionAudio(uri=gcs_uri)
 config = speech.RecognitionConfig(
 encoding=speech.RecognitionConfig.AudioEncoding.FLAC,
 language_code=language,
 audio_channel_count=2,
 enable_word_time_offsets=True)
 operation = client.long_running_recognize(config=config,audio=audio)
 result = operation.result()
 #From a huge data,collecting necessary data and storing in list

48

 json = []
 for section in result.results:
 data = {
 "transcript": section.alternatives[0].transcript,
 "words": []}
 for word in section.alternatives[0].words:
 data["words"].append({
 "word": word.word,
 "start_time": word.start_time.total_seconds(),
 "end_time": word.end_time.total_seconds(),
 "speaker_tag": word.speaker_tag
 })
 json.append(data)
 #From the list of words ,forming a sentence based on silence or different speaker
tag
 sentences = []
 sentence = {}
 for result in json:
 for i, word in enumerate(result['words']):
 wordText = word['word']
 if not sentence:
 sentence = {language: [wordText],'speaker': word['speaker_tag'],'start_time':
word['start_time'],'end_time': word['end_time']}
 # If we have a new speaker, save the sentence and create a new one:
 elif word['speaker_tag'] != sentence['speaker']:
 sentence[language] = ' '.join(sentence[language])
 sentences.append(sentence)
 sentence = {language: [wordText],'speaker': word['speaker_tag'],'start_time':
word['start_time'],'end_time': word['end_time']}
 else:
 sentence[language].append(wordText)
 sentence['end_time'] = word['end_time']

 # If there's greater than one second gap, assume this is a new sentence
 if((i+6< len(result['words'])) and ((word['end_time'] <
result['words'][i+1]['start_time']) or (sentence['start_time']+10 < sentence['end_time']))):

 sentence[language] = ' '.join(sentence[language])
 sentences.append(sentence)
 sentence = {}
 if sentence:
 sentence[language] = ' '.join(sentence[language])
 sentences.append(sentence)
 sentence = {}
 #Converting sentence into the target language and storing in Excel sheet with the

49

timestamp
 wb = Workbook()
 row,column,index=0,0,0
 sheet1 = wb.add_sheet('DATA')
 for var in sentences:
 input1=var[language]
 start_time=var['start_time']
 end_time=var['end_time']
 translate_client = translate.Client(credentials=credentials)
 if isinstance(input1,six.binary_type):
 input1=input1.decode("utf-8")
 result = translate_client.translate(input1, target_language=to_language)
 sheet1.write(row, column, index)
 index+=1
 column+=1
 sheet1.write(row, column, time.strftime('%H:%M:%S',time.gmtime(start_time)))
 column+=1
 sheet1.write(row, column, time.strftime('%H:%M:%S',time.gmtime(end_time)))
 column+=1
 sheet1.write(row, column, result['translatedText'])
 row+=1
 column=0
 wb.save('DATA.xls')

 #Creating a custom srt file and merging with the video file
 wb=xlrd.open_workbook("DATA.xls")
 sheet=wb.sheet_by_index(0)
 row,column=0,0
 total=sheet.nrows
 with open("subtitle.srt","w",encoding='UTF-8') as f:
 while(total):
 total-=1
 f.write(str(int(sheet.cell_value(row,column))+1))
 column+=1
 f.write("\n")
 f.write(str(sheet.cell_value(row,column))+",000")
 column+=1
 f.write(" --> ")
 f.write(str(sheet.cell_value(row,column))+",000")
 column+=1
 f.write("\n")
 f.write(sheet.cell_value(row,column))
 f.write("\n")
 f.write("\n")
 row+=1

50

 column=0
 command="ffmpeg -i "+video_filename+" -i subtitle.srt -c:s mov_text -c:v copy -c:a
copy "+output_filename
 args=shlex.split(command)
 subprocess.Popen(args)
 root.destroy()

#main function
def call_main(video_filename):
 global length
 length=len(video_filename)
 command="ffmpeg -i "+video_filename.replace(" ","")+" "+video_filename[:length-
4].replace(" ","")+".flac"
 args=shlex.split(command)
 subprocess.call(args)

#Methods for GUI Buttons
def pc_click():
 filename=filedialog.askopenfilename()
 path_text_obj.insert(0,filename)
 global video_filename
 video_filename=ntpath.basename(filename)
 call_main(video_filename)

def u_click():
 try:
 from pytube import YouTube
 from pytube import Playlist
 except Exception as e:
 print("Error")
 url=path_text_obj.get()
 ytd=YouTube(url)
 ytd=YouTube(url).streams.first().download()
 os.rename(ytd,ytd.replace(" ",""))
 global video_filename
 video_filename=ntpath.basename(ytd)
 call_main(video_filename)

def translator():
 input1=from_choice.get()
 input2=to_choice.get()
 source_lang=source(input1)
 target_lang=target(input2)
 print(source_lang)
 print(target_lang)

51

 output_filename=video_filename[:length-4].replace(" ","")+"(with-"+input2+"-
subtitle).mp4"
 audio_filename=video_filename[:length-4].replace(" ","")+".flac"
 bucket=storage_client.get_bucket(buck_name)
 blob=bucket.blob(audio_filename)
 blob.upload_from_filename(audio_filename)

subtitle_gen("gs://"+buck_name+"/"+audio_filename,source_lang,target_lang,video_file
name.replace(" ",""),output_filename)

#Initializing Tkinter Window
root = Tk()
root.title("Automatic Subtitle Encoder")
#encoder_icon = PhotoImage(file = "languages.png")
#root.iconphoto(True, encoder_icon)
root.resizable(0,0)
bg_image = ImageTk.PhotoImage(Image.open("maxresdefaultfinal.jpg"))

#Creating Canvas Object
canvas = Canvas(root, width=bg_image.width(), height=bg_image.height())
canvas.create_image(0,0,anchor='nw',image=bg_image)
canvas.pack()

#Configuring Style for GUI Components
fontstyle = ("Arial Rounded MT Bold",10,"bold")
style = ttk.Style()
style.theme_create('combostyle', parent='alt', settings={'TCombobox':
 {'configure':
 {'fieldbackground': '#d3e0ea',
 'background': '#276678',
 'highlightbackground' : '#276678',
 }}})
style.theme_use('combostyle')

#Text Label for required Fields
canvas.create_text(400,100, text="AUTOMATIC SUBTITLE", font=("Typo Draft
Demo", 35),fill="#9fd8df")
canvas.create_text(410,150, text="ENCODER", font=("Typo Draft Demo", 35),fill =
"#9fd8df")
canvas.create_text(160,300, text="Path for SRT File : ", font=("Arial Rounded MT
Bold", 18),fill = "#a4ebf3")
canvas.create_text(160,550, text="Target Language : ", font=("Arial Rounded MT
Bold", 18),fill = "#a4ebf3")
canvas.create_text(160,450, text="Source Language : ", font=("Arial Rounded MT

52

Bold", 18),fill = "#a4ebf3")

#Button for PC Dialog
dialog_button_obj_pc = Button(canvas, text="PC", command=pc_click, width=12,
bg="#9fd8df", font=fontstyle)
dialog_pc = canvas.create_window(350,350,window=dialog_button_obj_pc)

#Button for Youtube Reference
dialog_button_obj_youtube = Button(canvas, text="YOUTUBE", command=u_click,
width=12, bg="#9fd8df", font=fontstyle)
dialog_youtube = canvas.create_window(500,350,window=dialog_button_obj_youtube)

#Creating Path text box for directory
path_text_obj = Entry(root,
highlightthickness=4,width=30,highlightbackground="#276678",bg="#d3e0ea",
font=fontstyle)
canvas.create_window(420,300,window=path_text_obj)

#Button for Translation
convert_button = Button(canvas, text="Translate", command=translator, width=15,
bg="#9fd8df", font=fontstyle)
convert_button = canvas.create_window(380,630,window=convert_button)

#ComboBoxes for Language Selection
from_choice = ttk.Combobox(canvas,width = 25, font=fontstyle)
from_choice['values'] = ("Afrikaans(South
Africa)","Arabic(Bahrain)","Arabic(Egypt)","Arabic(Iraq)","Arabic(Israel)","Arabic(Jor
dan)","Arabic(Kuwait)","Arabic(Lebanon)","Arabic(Oman)",
"Arabic(Qatar)","Arabic(Saudi Arabia)","Arabic(State of Palestine)","Arabic(United
Arab Emirates)","Bengali(Bangladesh)","Chinese,Cantonese(Traditional Hong Kong)",
"Chinese,Mandarin(Traditional,Taiwan)","Czech(Czech
Republic)","Danish(Denmark)","Dutch(Netherlands)","English(Australia)","English(Gh
ana)","English(India)","English(Nigeria)",
"English(Philippines)","English(Singapore)","English(South
Africa)","English(Tanzania)","English(United Kingdom)","English(United
States)","Filipino(Philippines)","Finnish(Finland)",
"French(Canada)","French(France)","German(Germany)","Gujarati(India)","Hebrew(Isr
ael)","Hindi(India)","Indonesian(Indonesia)","Italian(Italy)","Japanese(Japan)","Kannad
a(India)",
"Korean(South
Korea)","Malay(Malaysia)","Malayalam(India)","Marathi(India)","Norwegian
Bokmål(Norway)","Persian(Iran)","Polish(Poland)","Portuguese(Brazil)","Portuguese(P
ortugal)",
"Russian(Russia)","Serbian(Serbia)","Spanish(Spain)","Spanish(United
States)","Swedish(Sweden)","Telugu(India)","Thai(Thailand)","Turkish(Turkey)","Ukra

53

inian(Ukraine)","Urdu(Pakistan)"
,"Vietnamese(Vietnam)","Zulu(South Africa)")
from_choice['state'] = 'readonly'
canvas.create_window(400,450,window=from_choice,height=20)

to_choice = ttk.Combobox(canvas,width = 25, font=fontstyle)
to_choice['values'] =
("Afrikaans","Albanian","Amharic","Arabic","Armenian","Azerbaijani","Basque","Bela
rusian","Bengali","Bosnian","Bulgarian","Catalan","Cebuano","Chinese(Simplified)",
"Chinese(Traditional)","Corsican","Croatian","Czech","Danish","Dutch","English","Esp
eranto","Estonian","Finnish","French","Frisian","Galician","Georgian","German","Gree
k","Gujarati",
"Haitian
Creole","Hausa","Hawaiian","Hebrew","Hindi","Hmong","Hungarian","Icelandic","Igb
o","Indonesian","Irish","Italian","Japanese","Javanese","Kannada","Kazakh","Khmer","
Kinyarwanda",
"Korean","Kurdish","Kyrgyz","Lao","Latin","Latvian","Lithuanian","Luxembourgish","
Macedonian","Malagasy","Malay","Malayalam","Maltese","Maori","Marathi","Mongoli
an","Myanmar(Burmese)",
"Nepali","Norwegian","Nyanja(Chichewa)","Odia(Oriya)","Pashto","Persian","Polish","
Portuguese(Portugal,Brazil)","Punjabi","Romanian","Russian","Samoan","Scots
Gaelic","Serbian",
"Sesotho","Shona","Sindhi","Sinhala(Sinhalese)","Slovak","Slovenian","Somali","Spani
sh","Sundanese","Swahili","Swedish","Tagalog(Filipino)","Tajik","Tamil","Tatar","Tel
ugu","Thai",
"Turkish","Turkmen","Ukrainian","Urdu","Uyghur","Uzbek","Vietnamese","Welsh","X
hosa","Yiddish","Yoruba","Zulu")
to_choice['state'] = 'readonly'
canvas.create_window(400,550,window=to_choice)

#Updating Canvas
canvas.update()
root.mainloop()

54

REFERENCES

1. A. Mathur, T. Saxena and R. Krishnamurthi, “IEEE International Conference on

Computational Intelligence & Communication Technology”, DOI :

10.1109/CICT.2015.46, 2019.

2. A. Ramani, A. Rao, V. Vidya and V. B. Prasad, “Automatic Subtitle Generation for

Videos”, the International Conference on Advanced Computing and Communication

Systems (ICACCS), 2020.

3. C. Duan et al, “Modeling Future Cost for Neural Machine Translation”, IEEE/ACM

Transactions on Audio, Speech, and Language Processing, vol. 29, DOI:

10.1109/TASLP.2020.3042006, 2019.

4. D. Xiong, M. Zhang and H. Lim, “A Maximum-Entropy Segmentation Model for

Statistical Machine Translation”, IEEE Transactions on Audio, Speech, and

Language Processing, volume-19, DOI : 10.1109/TASL.2011.2144971, 2019.

5. H. Li, J. Sha and C. Shi, "Revisiting Back-Translation for Low-Resource Machine

Translation Between Chinese and Vietnamese," IEEE Access, volume-8, DOI :

10.1109/ACCESS.2020.3006129, 2020.

6. H. Arif, H. Hajjdiab, F. A. Harbi and M. Ghazal, "A Comparison between Google

Cloud Service and iCloud," IEEE 4th International Conference on Computer and

Communication Systems (ICCCS), DOI: 10.1109/CCOMS.2019.8821744, 2019.

7. H. Sun, R. Wang, K. Chen, M. Utiyama et al, “Unsupervised Neural Machine

Translation With Cross-Lingual Language Representation Agreement”, IEEE/ACM

Transactions on Audio, Speech, and Language Processing, Volume-28, DOI :

10.1109/TASLP.2020.2982282, 2020.

8. James M. Keller, Derong Liu, David B. Fogel, "Recurrent Neural Networks," in

Fundamentals of Computational Intelligence: Neural Networks, Fuzzy Systems, and

Evolutionary Computation, IEEE, 2016.

55

9. K. Chen et al., "A Neural Approach to Source Dependence Based Context Model for

Statistical Machine Translation," IEEE/ACM Transactions on Audio, Speech, and

Language Processing, Volume-26, DOI : 10.1109/TASLP.2017.2772846, 2018.

10. K. Saengthongpattana, K.Kriengket, P. Porkaew et al, “Thai-English and English-

Thai Translation Performance of Transformer Machine Translation”, International

Joint Symposium on Artificial Intelligence and Natural Language Processing , DOI :

10.1109/iSAI-NLP48611.2019.9045174, 2019.

11. Kehai Chen, Rui Wang, Masao Utiyama et al, “Towards more diverse input

representation for Neural Machine Translation”, IEEE/ACM Transactions on Audio,

Speech, and Language Processing, Volume-28, 2020.

12. K. M. Chaman Kumar, S. Aswale, P. Shetgaonkar, V. Pawar et al, "A Survey of

Machine Translation Approaches for Konkani to English”, International Conference

on Emerging Trends in Information Technology and Engineering (ic-ETITE), 2020.

13. Lucia Specia, Carolina Scarton, Gustavo Henrique Paetzold, Graeme Hirst, “Quality

Estimation for Machine Translation”, Morgan & Claypool Publications, 2018.

14. M. Siahbani, R. M. Seraj, B. Sankaran and A. Sarkar, "Incremental translation using

hierarchichal phrase-based translation system," IEEE Spoken Language Technology

Workshop (SLT), DOI: 10.1109/SLT.2014.7078552, 2019.

15. Ozan, "Increasing system performance in machine learning by using

multiprocessing," 26th Signal Processing and Communications Applications

Conference (SIU), 2018, DOI : 10.1109/SIU.2018.8404280.

16. Q. Xiao, X. Chang, X. Zhang and X. Liu, "Multi-Information Spatial–Temporal

LSTM Fusion Continuous Sign Language Neural Machine Translation," IEEE

Access, Volume 8, DOI: 10.1109/ACCESS.2020.3039539, 2020.

17. R. D. Lero, C. Exton and A. Le Gear, “Communications using a speech-to-text-to-

speech pipeline” International Conference on Wireless and Mobile Computing,

Networking and Communications (WiMOB), DOI :

10.1109/WiMOB.2019.8923157, 2019.

18. S. Satpathy, S. P. Mishra and A. K. Nayak, “Analysis of Learning Approaches for

Machine Translation Systems'', International Conference on Applied Machine

56

Learning (ICAML), DOI : 10.1109/ICAML48257.2019.00038, 2019.

19. Stephen I. Gallant, "Neural Network Expert Systems," in Neural Network Learning

and Expert Systems, MIT Press, 1993.

20. S. Tyagi, D. Chopra, I. Mathur and N. Joshi, "Classifier based text simplification for

improved machine translation”, International Conference on Advances in Computer

Engineering and Applications, DOI : 10.1109/ICACEA.2015.7164711, 2020.

21. X. Wang, Z. Tu and M. Zhang, "Incorporating Statistical Machine Translation

Word Knowledge Into Neural Machine Translation”,IEEE/ACM Transactions on

Audio, Speech, and Language Processing, volume-26,DOI :

10.1109/TASLP.2018.2860287, 2019.

22. X. Liu, D. F. Wong, L. S. Chao and Y. Liu, "Latent Attribute Based Hierarchical

Decoder for Neural Machine Translation”, IEEE/ACM Transactions on Audio,

Speech, and Language Processing, volume - 27, 2019.

