
i

Disease Prediction Based on Symptoms

Using Machine Learning

A PROJECT REPORT

Submitted by

ABHINAYA R (715517104003)

AISHWARYA S (715517104005)

in partial fulfilment for the award of the degree of

BACHELOR OF ENGINEERING

in

COMPUTER SCIENCE AND ENGINEERING

PSG INSTITUTE OF TECHNOLOGY AND APPLIED RESEARCH,

COIMBATORE 641 062

ANNA UNIVERSITY: CHENNAI - 600 025

JUNE 2021

ii

ANNA UNIVERSITY: CHENNAI - 600 025

BONAFIDE CERTIFICATE

Certified that this project report “DISEASE PREDICTION BASED ON

SYMPTOMS USING MACHINE LEARNING” is the bonafide work of

“ABHINAYA R (715517104003), AISHWARYA S(715517104005)” who carried

out the project work under my supervision.

------------------------- -------------------------

SIGNATURE SIGNATURE

Dr. R. Manimegalai Ms. G. Niranjani

HEAD OF THE DEPARTMENT SUPERVISOR

Professor Assistant Professor(Senior Grade)

Computer Science and Engineering Computer Science and Engineering

PSG Institute of Technology and PSG Institute of Technology and

Applied Research, Applied Research

Coimbatore – 641 062 Coimbatore – 641 062

Submitted for the project viva-voce Examination held on

----------------------------------- -----------------------------------

INTERNAL EXAMINER EXTERNAL EXAMINER

iii

 ACKNOWLEDGEMENT

I express my sincere thanks to Shri. L Gopalakrishnan, Managing Trustee, PSG

& Son's Charities.

I am very grateful to Dr. G. Chandramohan, B.E(Hons), M.Tech, Ph.D,

Principal for providing me with an environment to complete our project successfully.

I also take the privilege of expressing my gratitude to Dr. P.V. Mohanram,

B.E(Hons), M.Tech, Ph.D, Secretary in extending his support to carry out my study.

I am greatly indebted to Dr. R. Manimegalai, M.E, Ph.D, Head of the

Department, Computer Science and Engineering for her guidance which was

instrumental in the completion of my project.

I express my sincere thanks to ProjectGuide Ms. G. Niranjani, M.Tech,

Assistant Professor(Senior Grade) for her constant encouragement and support

throughout the course.

Also, I earnestly thank my Project Coordinator Mr. S. Thivaharan, M.Tech,

Assistant Professor (Selection Grade) for his consistent support throughout the course.

Finally, I take this opportunity to extend my deepest appreciation to my family and

friends, who supported me during the crucial times of my project.

- ABHINAYA R

 AISHWARYA S

iv

VERIGUIDE ANALYSIS REPORT

v

ABSTRACT

The general day to day health of a person is vital for efficient functioning of

the human body. Considering certain prominent symptoms and their diseases to

build a Machine learning model that can predict common diseases based on real

symptoms is the objective of the project. Using the dataset of the most commonly

exhibited diseases, we built a relation to predict possible diseases based on the

symptoms. The proposed model utilizes the capabilities of different machine

learning algorithms to achieve accurate prediction. In health industry, it provides

several benefits such as detection of diseases and faster diagnosis. With the rise in

number of patients and diseases every year, medical system is overloaded and have

become overpriced in many countries. Most of these diseases involve a consultation

with doctors to get treatment. With sufficient data, prediction of a disease by an

algorithm can be very easy and cheap. Prediction of a disease using the symptoms

is an integral part of treatment. This project accurately predicts a disease by

looking at the symptoms of the patient. Such a system can have a very large

potential in medical industry. This project also has an interactive interface to

facilitate interaction with the system and display the result of our study.

 Keywords : Machine learning, Disease prediction, Health care.

vi

TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.

ABSTRACT v

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF ABBREVIATION xi

1 INTRODUCTION 1

 1.1 INTRODUCTION TO DISEASE

PREDICTION BASED ON SYMPTOMS

1

 1.2 OBJECTIVE 1

 1.3 PROBLEM STATEMENT 1

 1.4 PROJECT OVERVIEW 2

 1.5 SCOPE AND MOTIVATION 2

 1.6 INTRODUCTION TO MACHINE

 LEARNING ALGORITHM

2

1.7 MACHINE LEARNING IN

DISEASE PREDICTION BASED ON

SYMPTOMS

3

2 LITERATURE SURVEY 4

 2.1 EXISTING SYSTEMS 4

 2.2 DRAWBACK IN THE EXISTING

 SYSTEM

6

2.3 PROPOSED SYSTEM

6

 2.4 BENEFITS OF THE PROPOSED

 SYSTEM

6

vii

3 SYSTEM DESCRIPTION 7

 3.1 PYTHON 3.6 7

 3.2 NUMPY 7

 3.3 PANDAS 7

 3.4 TKINTER 8

 3.5 SKLEARN 8

 3.6 SQLITE3 8

4 SYSTEM DESIGN 9

 4.1 COLLECTION OF DATASET 9

 4.1.1 Attributes Required for

 Disease Prediction based on

 Symptoms

9

 4.1.2 Description of Dataset 9

 4.2 MODEL DEVELOPMENT 10

 4.3 CHOICE OF MACHINE

 LEARNING ALGORITHM

10

 4.3.1 Naive Bayes Algorithm 10

 4.3.2 K-Nearest Neighbour

 Algorithm

 14

 4.3.3 Decision Tree Algorithm 17

 4.3.4 Random Forest

 Algorithm

19

 4.4 MODEL ALGORITHM 21

5 SYSTEM IMPLEMENTATION 23

 5.1 SYSTEM FLOW 23

 5.2 SETTING UP ENVIRONMENT 24

viii

 5.3 MODEL IMPLEMENTATION 24

 5.4 SYSTEM IMPLEMENTATION 25

6 RESULT AND ANALYSIS 47

 6.1 TESTING THE MACHINE

 LEARNING ALGORITHM

47

 6.2 RESULT ANALYSIS 47

 7

 CONCLUSION AND FUTURE

 WORK

55

 7.1 CONCLUSION 55

 7.2 FUTURE WORK 55

 REFERENCES

 APPENDIX 1

ix

LIST OF TABLES

TABLE NO. TITLE PAGE NO

4.1 DESCRIPTION OF DATASET 9

x

LIST OF FIGURES

 FIGURE NO. TITLE PAGE NO

4.1 BAYES THEOREM 11

4.2 APPLICATIONS OF NAÏVE

 BAYES

12

4.3 APPLICATIONS OF NAIVE

 BAYES

13

4.4 EXAMPLE OF KNN 14

4.5 FEATURES OF KNN 15

4.6 K IN KNN ALGORITHM 16

4.7 DECISION TREE EXAMPLE 18

4.8 RANDOM FOREST ALGORITHM 20

5.1 SYSTEM ARCHITECTURE 23

6.1 DATASET SCREENSHOT 48

6.2 HOME PAGE 48

6.3 USER OR ADMIN MODULE 49

6.4 USER SIGNUP PAGE 49

6.5 USER LOGIN 50

6.6 USER MODULE 50

6.7 CHECK DISEASE 51

6.8 CHECK HISTORY 51

6.9 GIVE FEEDBACK 52

6.10 ADMIN MODULE 52

6.11 ADMIN LOGIN 53

6.12 ADMIN HISTORY PAGE 53

6.13 ADMIN FEEDBACK PAGE 54

xi

 LIST OF ABBREVIATIONS

 ABBREVIATION DESCRIPTION

 CNN CONVOLUTION NEURAL NETWORKS

 CSV COMMA SEPARATED VALUES

 DT DECISION TREE

 GUI GRAPHICAL USER INTERFACE

 KNN K – NEAREST NEIGHBOUR

LR LOGISTIC REGRESSION

 ML MACHINE LEARNING

 NB NAÏVE BAYES

 RF RANDOM FOREST

 SVM SUPPORT VECTOR MACHINES

1

CHAPTER 1

 INTRODUCTION

1.1 INTRODUCTION TO DISEASE PREDICTION BASED ON SYMPTOMS

Healthcare is one of the most important research fields with the rapid

improvement of technology and increase in data. It is difficult to handle huge amount

of data of the patients. Big Data Analytics can be used to handle such data. There

are a lot of procedures for the treatment of multiple diseases across the world.

Machine Learning is a prominent approach that helps in prediction and diagnosis of

a disease. The project presents the idea of a prediction of a disease based on

symptoms using machine learning. Machine Learning algorithms such as Naive

Bayes, KNN, Decision Tree and Random Forest are employed to predict the disease.

Its implementation is done in Python programming language.

1.2 OBJECTIVE

Accurate and on-time analysis of any health-related problem is important for

the prevention and treatment of a disease. The traditional way of diagnosis may not

be sufficient in the case of a serious ailment. Developing a medical diagnosis system

based on machine learning algorithms for prediction of any disease can help in a

more accurate diagnosis than the conventional method. The objective of this project

is to build a machine learning model to predict the disease based on symptoms using

multiple machine learning algorithms.

1.3 PROBLEM STATEMENT

There are many people who search online for health related information,

diagnosis and different treatments. A recommendation system will be useful for this

purpose. The objective of this project is to build a machine learning model to predict

2

a disease based on its symptoms. This proposed model utilizes the capabilities of

different machine learning algorithms to achieve accurate prediction.

1.4 PROJECT OVERVIEW

This project presents the idea of prediction of a disease based on symptoms

using machine learning. Machine Learning algorithms such as Naive Bayes, KNN,

Decision Tree and Random Forest are employed on the provided dataset to build the

model and predict the disease.

1.5 SCOPE AND MOTIVATION

The number of patients and diseases are increasing every year. The disease

can be predicted with sufficient data using Machine Learning algorithms. This

project accurately predicts a disease based on the symptoms given by the user. This

system can have large potential in the medical industry. This project also has an

interactive interface to facilitate user interaction with the system and display the

result of our study.

1.6 INTRODUCTION TO MACHINE LEARNING

Machine learning allows software applications to become more accurate in

predicting outcomes without being explicitly programmed. Machine learning is of

three types - Supervised Learning, Unsupervised Learning, Reinforcement Learning.

Supervised learning is training the model by providing training, input and output

patterns to the systems. Unsupervised learning is a self-learning technique in which

system has to discover the features of the input population on its own and no prior

set of categories are used. Reinforcement learning is the training of machine

learning models to make a sequence of decisions. Some applications of machine

https://blog.openai.com/openai-gym-beta/

3

learning are medical diagnosis, image recognition, traffic prediction, product

recommendations, self driving cars, speech recognition.

1.7 MACHINE LEARNING IN DISEASE PREDICTION BASED ON

SYMPTOMS

Machine Learning is a prominent approach that helps in prediction and

diagnosis of a disease. Machine Learning algorithms such as Naive Bayes, K–

Nearest Neighbour, Decision Tree and Random Forest are employed on the dataset

to build the model for the prediction of disease.

Naive Bayes is a statistical classification technique based on Bayes Theorem.

It is a classification algorithm for binary (two-class) and multi-class classification

problems.

 K-Nearest Neighbour is one of the simplest Machine Learning

algorithms based on Supervised Learning technique. K-NN algorithm assumes the

similarity between the new case/data and available cases and put the new case into

the category that is most similar to the available categories.

 Decision tree is the most powerful and popular tool for classification and

prediction. A Decision tree is a flowchart like tree structure, where each internal

node represents a test on an attribute, each branch represents an outcome of the

test, and each leaf node (terminal node) represents a class label.

 Random Forest is a classifier that contains a number of decision trees on

various subsets of the given dataset and considers the average to improve the

predictive accuracy of the model. It is an ensemble method which is better than a

single decision tree because it reduces the over-fitting by averaging the result.

4

CHAPTER 2

LITERATURE SURVEY

2.1 EXISTING SYSTEMS

The number of papers dealing with disease prediction based on symptoms in

literature is growing exponentially. Several researchers have played a significant

role in the development of disease prediction algorithms.

D. Dahiwade et al., [1] in 3rd International Conference on Computing

Methodologies and Communication (ICCMC), Erode, India, 2019, designed a

disease prediction model using machine learning approach. Due to increased

amount of data growth in medical and healthcare field the accurate analysis on

medical data has benefits on early patient care. Data mining finds hidden pattern

information in the huge amount of medical data. In this literature, the aim is to

recognize trends across various types of supervised Machine learning models in

disease detection through the examination of performance metrics. The most

prominently discussed ML algorithms are Convolution Neural Network(CNN), K-

Nearest Neighbour (KNN). It is a general disease prediction based on symptoms of

the patient. The accuracy of general disease prediction by using CNN is 84.5% which

is more than KNN algorithm.

S. Grampurohit et al., [2] in International Conference for Emerging

Technology (INCET), Belgaum, India, 2020, proposed accurate analysis of

medical database benefits in early disease prediction, patient care and community

services. The techniques of machine learning are successfully employed in assorted

applications including disease prediction. The aim of developing classifier system

using machine learning algorithms is to immensely help to solve the health-related

issues by assisting the physicians to predict and diagnose diseases at an early stage.

5

In this literature a sample data of 4920 patients records diagnosed with 41

diseases was selected for analysis. A dependent variable composed of 41 diseases.

95 of 132 independent variables (symptoms) closely related to diseases were

selected and optimized. This research work carried out that demonstrates the disease

prediction system developed using Machine learning algorithms such as Decision

Tree classifier, Random forest classifier, and Naïve Bayes classifier. The paper

presents the comparative study of the results of the above algorithms used.

Hong Qing Yu [3] in IEEE 7th International Conference on Computer Science

and Network Technology (ICCSNT), Dalian, China, 2019, introduced Experimental

Disease Prediction on Combining Natural Language Processing and Machine

Learning. He proposed a framework to evaluate the efficiency of applying both

Machine Learning and Natural Language Processing technologies for disease

prediction system. He used modern computational methods to develop and analyse

new approaches that can efficiently predict the disease with reasonable accuracy.

S. Vijava Shetty et al., [4] in International Conference on Communication

and Electronics Systems (ICCES), Coimbatore, India, 2019, designed symptom

based health prediction system using data mining. Taking certain prominent

symptoms and their diseases to build a Machine learning model to predict common

diseases based on real symptoms is the objective of this research.

 Feixiang Huang et al., [5] in IEEE International Conference on Granular

Computing, Hangzhou, China, 2012 proposed a model to predict a disease by using

data mining based on healthcare information system. This paper applies the data

mining process to predict hypertension from patient medical records with eight other

diseases.

 A. Gavhane et al., [6] in Second International Conference on Electronics,

Communication and Aerospace Technology (ICECA), Coimbatore, India, 2018 has

discussed about prediction of heart disease using machine learning. The problem is

https://ieeexplore.ieee.org/xpl/conhome/6459622/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6459622/proceeding

6

solved using emerging technologies like deep learning to get good results in terms

of speed and Accuracy. This work investigated and showed the potential of using

DNN-based data analysis for detecting heart disease based on routine clinical data.

DNN data analysis techniques can yield very high accuracy.

 M. Shankar et al., [7] in Second International Conference on Advances in

Computing and Communication Engineering, Dehradun, India, 2015 introduced a

method for disease recognition and cure time prediction based on symptoms and

proposed a novel method for recognition of diseases and prediction of their cure

time based on the symptoms. For predicting the cure time of a disease,

reinforcement learning is used. The algorithm takes into account the similarity

between the condition of the current user and other users who have suffered from

the same disease.

 M. Chen et al., [8] in IEEE, 2017 developed a disease prediction model

based on machine learning over big data from healthcare communities using

convolutional neural network (CNN)-based multimodal disease risk prediction

algorithm using structured and unstructured data from hospital. To overcome the

difficulty of incomplete data, we use a latent factor model to reconstruct the missing

data. Regional chronic disease of cerebral infarction were experimented. The

prediction accuracy of our proposed algorithm reaches 94.8%.

With the dataset of the most commonly exhibited diseases, they built a relation

to predict the possible disease based on the symptoms which were given as input.

The proposed model utilizes the capability of different Machine learning algorithms

combined with text processing to achieve accurate prediction. In health industry, it

provides several benefits such as pre-emptive detection of diseases, faster diagnosis,

medical history for review of patients.

7

2.2 DRAWBACKS IN THE EXISTING SYSTEM

 The system involves complex processing methods.

 Lot of steps are involved and all these steps are repeatedly used in a loop to

identify the disease.

 The size of the software is usually large.

 A generalised approach is not seen in some of the above projects. They have

been designed only for a particular disease.

2.3 PROPOSED SYSTEM

The proposed system uses machine learning algorithm to predict the disease

based on their symptoms. A machine learning model is built by taking certain

prominent symptoms and their diseases. The dataset of the most commonly exhibited

diseases is collected to build the model. The model is built to predict the possible

disease based on the symptoms which are given as input. The proposed model

utilizes the capability of different Machine learning algorithms to achieve accurate

prediction. The system uses Naive Bayes, K – Nearest Neighbor, Decision Tree and

Random Forest algorithm. This system does not require hardware components and

interfacing. Hence it reduces the cost and also code can be reused. The total size of

the software is very small i.e. it can be installed in any system.

2.4 BENEFITS OF THE PROPOSED SYSTEM

 The project eliminates the use of an extra hardware.

 This system can be effectively used anywhere.

 The code is very simple and can be enhanced with additional parameters to

make the system more effect

8

CHAPTER 3

SYSTEM DESCRIPTION

The language used to code the algorithm is python. Machine learning models

are trained using dataset which contains symptoms and its diseases and tested using

testing dataset. The user enters the symptoms as input. The symptoms are passed to

the machine learning models to detect the disease. The detected diseases are

displayed on the screen.

3.1 PYTHON

Python is an interpreted, high – level programming language. Integrated

Development and Learning Environment (IDLE) is an integrated development

environment (IDE) for Python. It allows the programmers to write Python code.

Like Python Shell, IDLE can be used to execute a single statement. It gives the

ability to create, modify, and execute Python scripts. IDLE provides text editor to

create Python scripts that has features like smart indent, syntax highlighting

and,autocompletion. It also has a debugger with stepping and breakpoints features.

3.2 NUMPY

NumPy is a Python programming language library, that adds support for

multi-dimensional arrays and large matrices. It has huge collection of high-level

mathematical functions to work on the arrays. It is used to perform mathematical

operations on arrays such as algebraic, statistical and trigonometric routines.

3.3 PANDAS

Pandas is a Python programming language library which provides data

manipulation and analysis tools for Python programming language. It is free

9

software released under BSD license. Pandas allows us to import data from various

file formats such as Microsoft Excel , comma-separated values (csv), SQL and

JSON, . Pandas provides various data manipulation operations such as reshaping,

selecting, merging, as well as data cleaning and wrangling features.

3.4 TKINTER

Tkinter is the commonly used library for creating Graphical User Interface

in Python. This framework allows users with a simple way to create GUI elements

using the widgets found which is found in the Tk toolkit. Tk widgets can

be used to construct menus, data fields, buttons etc. in the Python application.

3.5 SKLEARN

Scikit-learn (Sklearn) is a software machine learning library developed for

python programming language. The sklearn library contains many tools for

statistical modelling and machine learning including clustering, regression,

classification, and dimensionality reduction. It features various algorithms like k-

neighbours, random forests and support vector machines. It also

supports Python scientific and numerical libraries like SciPy and NumPy.

3.6 SQLITE3

The sqlite3 module is a part of the Python standard library. It allows us work

with a fully featured on-disk SQL database without installing any additional

software. To connect python with sqlite3, establish a connection to

the SQLite database by creating a Connection object. Next, a Cursor object is

created using cursor method of the connection object. Then, SQL queries are

executed.

10

CHAPTER 4

SYSTEM DESIGN

4.1 COLLECTION OF DATA

The dataset for this project has been collected from various open-source

websites. The dataset collected were divided into training set and a testing set. A

training set is a dataset used to train the model. In training the model, specific

features are picked out from the training set. These features are then incorporated

into the model. The test set is a dataset used to measure how well the model performs

at making predictions on that test set.

4.1.1 Attributes Required for Disease Prediction based on Symptoms Using

Machine Learning

Various symptoms and its diseases were collected from open source. Attributes are

symptomsand its diseases

4.1.2 Description of Dataset

For the base version of this project, 261 diseases and 500+ symptoms are

downloaded from open source. The number of symptoms and diseases in training

and testing are listed as a table 4.1 below:

 Table 4.1 Description of dataset

Attributes Training

Set

Test

Set

Symptoms and its

Diseases

4921 1121

11

4.2 MODEL DEVELOPMENT

The model is developed using Machine Learning Algorithms. Machine

Learning is the research field where the computers have the capability to learn

without being explicitly programmed. It is based on the idea that systems can learn

from data, identify patterns in the data and make predictions with minimal human

intervention. Machine learning is used in websites to make personalized

recommendations , email filters to sort out spam, web search engines, banking

software and lots of apps such as voice recognition.

4.3 CHOICE OF MACHINE LEARNING ALGORITHM

The Machine Learning algorithms used in this project are Naive Bayes, K-

Nearest Neighbour, Decision Tree and Random Forest Algorithm. These algorithms

have proven to be very effective in prediction of diseases. In this project, the

proposed model utilizes the capabilities of these machine learning algorithm to

achieve accurate prediction.

4.3.1 Naive Bayes Algorithm

Naive Bayes algorithm is a supervised machine learning algorithm, based

on Bayes theorem. It is mainly used in text classification which includes a high-

dimensional training dataset. Naive Bayes Classifier is one of the simple and most

effective algorithms which helps in building models that can make quick predictions.

It is a probabilistic classifier, which means it predicts on the basis of the probability

of an object. Some examples of Naive Bayes Algorithm are Sentimental

analysis, classifying articles and spam filtration.

12

4.3.1.1 Bayes Theorem

Bayes’ theorem describes the probability of an event, based on prior

knowledge of conditions that might be related to the event. It serves as a way to

figure out conditional probability.

Given a Hypothesis H and evidence E, Bayes’ Theorem states that the

relationship between the probability of Hypothesis before getting the

evidence P(H) and the probability of the hypothesis after getting the

evidence P(H|E) is :

 Figure 4.1 Bayes Theorem

This relates the probability of the hypothesis before getting the

evidence P(H), to the probability of the hypothesis after getting the evidence,

P(H|E). P(H) is called the prior probability, and P(H|E) is called the posterior

probability. The factor that relates the two, P(H|E) / P(E), is called the likelihood

ratio.

13

4.3.1.2 Steps involved in Naive Bayes Algorithm

 Calculate prior probability for given class labels.

 Calculate conditional probability with each attribute for each class

 Multiply same class conditional probability

 Multiply prior probability with same class conditional probability

 See which class has higher probability, higher probability class belongs to given

input set.

4.3.1.3 Types of Naive Bayes Model:

There are three types of Naive Bayes Model, which are given below:

Gaussian: The Gaussian model assumes that the features follows normal

distribution.

Multinomial: The Multinomial Naive Bayes classifier is used when the

features are multinomial distributed.

Bernoulli: The Bernoulli classifier is similar to the Multinomial classifier, but

the predictor variables are independent Boolean variables.

4.3.1.4 Applications of Naive Bayes

Medical Diagnosis:

Figure 4.2 Application of Naive Bayes

 [Source : https://www.edureka.co/blog/naive-bayes-tutorial/]

14

Nowadays modern hospitals are equipped with monitoring and other data collection

devices resulting in huge amount of data which are collected through health

examination and medical treatment. Naive Bayes classifier takes into account

evidence from many attributes to make the final prediction and provides transparent

explanations of its decisions.

Weather Prediction :

Figure 4.3 Application of Naive Bayes

 [Source : https://www.edureka.co/blog/naive-bayes-tutorial/]

Weather is one of the most influential factors in our daily life, to an extent that it

may affect the economy of a country that depends on occupation like

agriculture. Weather prediction has been a challenging problem in the

meteorological department for years. Even after the technological and scientific

advancement, the accuracy in prediction of weather has never been sufficient.

4.3.1.5 Advantages of Naive Bayes Classifier:

 Naive Bayes is one of the fast and easy Machine Learning algorithms to predict

a class of datasets.

 It is effective in Multi-class predictions as compared to the other Algorithms.

 It is the most popular for text classification problems.

15

4.3.1.6 Disadvantages of Naive Bayes Classifier:

Naive Bayes assumes that all features are independent, it cannot learn the relationship

between features.

4.3.2 K-Nearest Neighbour Algorithm

KNN which stands for K Nearest Neighbour is a Supervised Machine

Learning algorithm that classifies a new data point into the target class, depending

upon the features of its neighbouring data points. An example of KNN Algorithm

is shown in figure 4.4, the features such as pointy ears can be used to identify cats

and similarly we can identify dogs based on their long ears.

 Figure 4.4 Example of KNN

[Source : https://medium.com/edureka/knn-algorithm-in-r-a2d657bca691]

The KNN algorithm will classify into either cats or dogs depending on the

similarity of features. So if the new image has pointy ears, it will classify the image

as a cat because it is similar to the cat images. The KNN algorithm classifies data

points based on their similarity.

16

4.3.2.1 Features of KNN Algorithm

Figure 4.5 Features of KNN

 [Source : https://medium.com/edureka/knn-algorithm-in-r-a2d657bca691]

The KNN algorithm has the following features:

 KNN is a Supervised Learning algorithm that uses labelled data to predict the

output.

It is one of the simple Machine learning algorithms that can be implemented for

various set of problems.

It is mainly based on feature similarity. KNN checks how similar a data point is

to its neighbour and classifies the data point into the class it is most similar to.

 KNN does not make any assumptions about the data set. This makes the

algorithm more effective as it can handle realistic data.

 KNN is a lazy algorithm, it memorizes the training data set

 KNN can be used for both classification and regression problems.

https://medium.com/edureka/knn-algorithm-in-r-a2d657bca691

17

4.3.2.2 K in KNN Algorithm

The k-nearest neighbour algorithm uses a very simple approach to perform

classification. When tested with a new example, it looks through the training data

and finds the k training examples that are closest to the new example. It then assigns

the most common class label (among those k-training examples) to the test example.

 Figure 4.6 K in KNN Algorithm

[Source : https://www.edureka.co/blog/k-nearest-neighbors-algorithm/]

An example of k=3 is illustrated in Figure 4.6. K in KNN algorithm represents the

number of nearest neighbours. If k=3, the labels of the three closest classes are

checked and the most common label is assigned.

4.3.2.3 Advantages of KNN

 New data can be added seamlessly

 No Training Period

 KNN is very easy to implement

18

4.3.2.4 Disadvantages of KNN

 Does not work well with large dataset

 Need feature scaling

 Does not work well with high dimensions

 Sensitive to noisy data, missing values and outliers

4.3.2.5 Applications of KNN

 KNN is used for Recommendation Systems. Although in the real world, more

sophisticated algorithms are used for the recommendation system. KNN is not

suitable for high dimensional data, but KNN is an excellent baseline approach for

the systems. Many companies make a personalized recommendation for its

consumers, such as Netflix, Amazon, YouTube, and many more.

 KNN can search for semantically similar documents. Each document is

considered as a vector. If documents are close to each other, that means the

documents contain identical topics.

 KNN can be effectively used in detecting outliers. For example, Credit Card fraud

detection.

4.3.3 DECISION TREE ALGORITHM

Decision tree is the most powerful tool for classification and prediction. A

Decision tree is a flowchart like tree structure, where each internal node denotes a

test on an attribute, each branch represents an outcome of the test, and each leaf node

holds a class label. An example for decision tree algorithm is illustrated in Figure

4.7.

19

Figure 4.7 Decision tree example

[Source : https://www.slideshare.net/EdurekaIN/decision-tree-algorithm-decision-tree-

in-python-machine-learning-algorithms-edureka]

4.3.3.1 Decision Tree Terminology:

Root node: Represents entire population

Splitting: Process of dividing sample

Decision Node: Node splits into further sub nodes

Leaf / Terminal Node: Last stage of node (output label)

Pruning: Opposite to splitting (to reduce size of tree)

4.3.3.2 Types of Decision Tree Algorithm

Iterative Dichotomiser 3(ID3) creates a multiway tree, finding for each node (i.e. in

a greedy manner) the categorical feature that will yield the largest information gain

for categorical targets.

C4.5 converts the trained trees (i.e. the output of the ID3 algorithm) into sets of if-

20

then rules. This accuracy of each rule is then evaluated to determine the order in

which they should be applied. Pruning is done by removing a rule’s precondition if

the accuracy of the rule improves without it.

Classification and Regression Trees (CART) is very similar to C4.5, but it differs in

that it supports numerical target variables (regression) and does not compute rule

sets.

4.3.3.3 Advantages of Decision Tree

 Decision trees generate understandable rules.

 Decision trees can handle both continuous and categorical data.

 Decision trees perform classification without much computation.

 Decision trees provide a clear indication of which fields are most important for

prediction or classification.

4.3.3.4 Disadvantages of Decision Tree

 Decision trees are less appropriate for estimation tasks where the goal is to

predict the value of a continuous variable.

 Decision trees are prone to errors in classification problems with many class

and small number of training examples.

 Decision trees can be computationally expensive

4.3.4 Random Forest Algorithm

Random forest algorithm is a supervised classification and regression

algorithm. It creates a forest with several trees.

Generally, the more trees in the forest the more robust the forest looks like.

Similarly, in the random forest classifier, the higher the number of trees in the forest,

greater is the accuracy of the results.

21

Figure 4.7 Random forest algorithm

 [Source : https://www.edureka.co/blog/random-forest-classifier/]

Random forest builds multiple decision trees (called the forest) and glues them

together to get a more accurate and stable prediction. The forest it builds is a

collection of Decision Trees, trained with the bagging method.

4.3.4.4 Difference between Random Forest And Decision Trees

Random forest is an ensemble of decision trees, it randomly selects a set of

parameters and creates a decision tree for each set of chosen parameters.

After creating multiple Decision trees using this method, each tree selects or votes

the class, and the class receiving the most votes by a simple majority is termed as the

predicted class.

Decision trees are built on the entire data set using all the predictor variables,

whereas Random Forests are used to create multiple decision trees, such that each

decision tree is built only on a part of the data set.

22

4.3.4.5 Uses of Random Forest

 Decision trees are convenient and easily implemented, they lack accuracy.

Decision trees work very effectively with the training data that was used to build

them, but they’re not flexible when it comes to classifying the new sample which

means that the accuracy during testing phase is very low.

 This happens due to a process called Over-fitting. Over-fitting occurs when a

model studies the training data to such an extent that it negatively influences the

performance of the model on new data.

 This means that the disturbance in the training data is recorded and learned as

concepts by the model. But the problem here is that these concepts do not apply to

the testing data and negatively impact the model’s ability to classify the new data,

hence reducing the accuracy on the testing data.

4.3.4.6 Advantages Of Random Forest

 Random Forest is less prone to overfitting than Decision Tree and other

algorithms

 Random Forest outputs the importance of features.

4.3.4.7 Disadvantages Of Random Forest

 Random Forest may change considerably by a small change in the data.

 Random Forest computations may go far more complex compared to other

algorithms.

4.4 MODEL ALGORITHM

The overall training process using the algorithm may be summarized as below

Step1: The required libraries are imported.

23

Step2: The file is in CSV format, pandas read_csv method is used to read our CSV

data file.

Step3: Load the data in pandas dataframe.

Step4: Replace the disease with the values in the file using inbuilt function replace

in pandas.

Step5: Scikit-Learn contains the tree library, which contains built-in classes and

methods for various decision tree algorithms. We use the DecisionTreeClassifier.

The fit method of this classifier is called to train the algorithm on the training data.

The training data is passed as the parameter to the fit method. The classifier is trained

to make predictions on the test data. To make predictions, the predict method of the

DecisionTreeClassifier class is used.

Step6: Import the KNeighborsClassifier class from the sklearn.neighbors library.

The class is initialized with one parameter, i.e, n_neighbors. This is basically the

value for the K. There is no ideal value for K and it is selected after testing and

evaluation, however to start out, 5 seems to be the most commonly used value for

KNN algorithm.

Step7: Initialize the Naive Bayes Classifier and fit the data. In this, the Guassian

Naive Bayes Classifier is used.

Step8: Initialize the Random Forest Classifier class of the sklearn.ensemble library. The

important parameter of the Random Forest Classifier class is the n_estimators parameter.

This parameter defines the number of trees in the random forest. The value of the

n_estimator is set to 100.

24

CHAPTER 5

SYSTEM IMPLEMENTATION

5.1 SYSTEM FLOW

Initially the model for Naïve bayes, K-Nearest Neighbour, Decision tree and

random forest is created. The model is trained, tested and optimized to give the best

accuracy.

When the application is initiated, there are two modules – user module and

admin module. The user has to enter his valid details and login into the system. If

he is a new user the user has to signup and then login. The user has to select among

the three options – Check disease, History and feedback.

The user can check the disease by entering his symptoms. The higher the

symptoms he enter, higher will be the accuracy. The detected disease will be

displayed on the screen. The user can check his history in the history module. The

user can also give his feedback in the feedback module. In the admin module, the

admin can login with his credentials. The admin can see the history and feedback of

all the users. The Figure shows a simple representation of the system architecture.

Figure 5.1 System Architecture

25

5.2 SETTING UP ENVIRONMENT

Python 3.6 is installed. The Pandas, NumPy, Tkinter and Sklearn, sqlite3

libraries are installed in the system.

5.3 MODEL IMPLEMENTATION

The Machine learning algorithms used for training the model are Naive

Bayes, K – Nearest Neighbour, Decision tree and Random forest algorithm.

Step1: The required libraries are imported.

Step2: The file is in CSV format, pandas read_csv method is used to read our CSV

data file.

Step3: Load the data in pandas dataframe.

Step4: Replace the disease with the values in the file using inbuilt function replace

in pandas.

Step5: Scikit-Learn contains the tree library, which contains built-in classes and

methods for various decision tree algorithms. We use the DecisionTreeClassifier.

The fit method of this classifier is called to train the algorithm on the training data.

The training data is passed as the parameter to the fit method. The classifier has been

trained to make predictions on the test data. To make predictions,

the predict method of the DecisionTreeClassifier class is used.

Step6: ScikitLearn's metrics library contains the classification_report and

confusion_matrix which is used for evaluating the algorithm.

Step7: Import the KNeighborsClassifier class from the sklearn.neighbors library.

The class is initialized with one parameter, i.e n_neighbors. This is basically the

value for the K. There is no ideal value for K and it is selected after testing and

evaluation, however to start out, 5 seems to be the most commonly used value for

KNN algorithm.

26

Step8: ScikitLearn's metrics library contains the classification_report and

confusion_matrix.

Step9: Initialize the Naive Bayes Classifier and fit the data. Guassian Naive Bayes

Classifier is used.

Step10: Then, we evaluate its algorithm using the test set and calculate the accuracy

Step11: Initialize the Random Forest Classifier class of the sklearn.ensemble library.

The important parameter of the Random Forest Classifier class is

the n_estimators parameter. This parameter defines the number of trees in the

random forest. The value of the n_estimator is set to 100.

Step12: The final step of solving a machine learning problem is to evaluate the

performance of the algorithm. ScikitLearn's metrics library contains

the classification_report and confusion_matrix which is used for evaluating the

algorithm.

5.4 SYSTEM IMPLEMENTATION

In the proposed system, there is a diseases with its symptoms dataset which

consists of two folders, Train and Test. These data are fed to train the model. The

test data is used to evaluate the performance of the algorithm.

Apart from the datasets, there are ten python files. They are

Home_page.py – This is the first page of the system. This page contains the

description of the system. When the user clicks Get Started button, the next page is

initiated.

Login page.py – Here there are two modules user module and admin module. The

user has to select the user module.

Login_form.py – This displays the login form for the user on the screen. If the user

is the new user then he has to signup and then login the form. The form asks for

email id and password which the user has to enter and login.

27

User_module.py – After login the user has to select between the three options

check disease, history and feedback.

CheckDisease.py – If the user clicks check disease button, this page is opened. The

user has to select the symptoms from the drop down menu to check the disease.

The higher the symptoms he enter, higher will be the accuracy. Then he has to

click the buttons to check the disease.

History.py – In this page the user can check his history.

Feedback.py – In this page the user can give his feedback.

Admin_login.py – Admin has to enter his credentials and login.

Admin_history.py – Here the admin can check the history of all the users.

Admin_feedack.py – Here the admin can check the feedback of the users.

28

CHAPTER 6

RESULT AND ANALYSIS

6.1 TESTING THE MACHINE LEARNING ALGORITHM

System testing presents an interesting anomaly for the software engineer. The

engineer creates a series of test cases that are intended to “demolish” the software

that has been built. Testing requires that the developer discards the preconceived

notions of the “correctness” of software just developed and overcome a conflict of

interest that occurs when errors are uncovered.

There are several rules that can serve well as testing objectives. Testing is a

process of executing a program with the intent of finding an error. A good testcase

is one that has a high probability of finding an as-yet undiscovered error. A

successful test is one that uncovers an as-yet undiscovered error.

Initially the environment checking is done to see if all the necessary

requirements are installed or not.

Installation of Python 3.6, Pandas, Numpy, Tkinter, Sklearn, sqlite3 are

confirmed. The model is trained and tested with different symptoms. The results are

obtained and the accuracy is checked. The model is able to predict reasonable

diseases and hence the model is tested successfully.

Now the model is tested after loading it into the application’s script. On

successful compilation, the loading of the model is confirmed. Now, the symptoms

are tested for different diseases and the output is displayed.

6.2 RESULT ANALYSIS

The system has been tested several times, improvising the result and accuracy

at each test. The training accuracy tends to be 95% and the model results coped up

with the accuracy.

29

Figure 6.1 Dataset screenshot

 Figure 6.2 Screenshot of home page

30

 Figure 6.3 Screenshot of user / admin module

Figure 6.4 Screenshot of user signup module

31

 Figure 6.5 Screenshot of user login module

Figure 6.6 Screenshot of user module

32

 Figure 6.7 Screenshot of disease prediction page

 Figure 6.8 Screenshot of history page

33

 Figure 6.9 Screenshot of feedback page

 Figure 6.10 Screenshot of admin login page

34

 Figure 6.11 Screenshot of admin module

 Figure 6.12 Screenshot of admin history page

35

 Figure 6.13 Screenshot of admin feedback page

36

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 CONCLUSION

The project Disease prediction based on symptoms using Machine Learning

is very much useful in everyone’s day to day life and it is mainly more important for

the healthcare sector to predict the diseases of patients based on the symptoms that

they have specified. The Disease Prediction system is to provide prediction for the

various and generally occurring diseases that when unchecked and sometimes

ignored can turn into fatal diseases and cause a lot of problem to the patient and as

well as their family members and can consult the concerned specialist.

7.2 FUTURE WORK

 The system can be trained with more number of datasets and it can further be

optimised.

 The more interactive user interface can be created. The latest diseases can be

updated.

 Doctors specific to the predicted disease can be referred.

37

APPENDIX

The code of modules are as follows:

Homepage.py

import tkinter
from tkinter import *

import os

root = Tk()

root.minsize(800,800)

root.title("Disease Prediction Based on Symptoms using Machine Learning")

root.configure(background='black')

root.wm_attributes("-fullscreen", True)

from tkinter import messagebox

def Exit():

qExit=messagebox.askyesno("System","Do you want to exit the system")

if qExit:

root.destroy()

exit()

def login():

import login_page

C = Canvas(root, bg="black", height=250, width=300)
filename = PhotoImage(file="C:\\Users\\Abinaya\\Desktop\\fmp1\\b.png")

background_label = Label(root, image = filename)

38

background_label.place(x=0, y=0, relwidth=1, relheight=1)
w2 = Label(root, justify=CENTER, text="Disease Prediction Based on Symptoms

using Machine Learning", fg="darkgreen")

w2.config(font=("Times",26,"bold"))

w2.place(x=175, y=50)

w2 = Label(root, justify=CENTER, text="About Us !!!", fg="purple")

w2.config(font=("Times",22,"bold"))

w2.place(x=100, y=150)

w2 = Label(root, justify=CENTER, text="The general day to day health of a person

is vital for efficient functioning of the human body", fg="Black")

w2.config(font=("Times",19,"bold"))

w2.place(x=100, y=200)

w2 = Label(root, justify=CENTER, text="Taking certain symptoms and their

disease, we build a machine learning model to predict diseases",fg="Black")

w2.config(font=("Times",19,"bold"))

w2.place(x=100, y=235)

w2 = Label(root, justify=CENTER, text="The proposed model uses different

machine learning algorithm to achieve accurate prediction", fg="Black")

w2.config(font=("Times",19,"bold"))

w2.place(x=100, y=270)
dst = Button(root, text="Get Started",command=login, fg="white",bg="green")

dst.config(font=("Times",22,"bold"))

dst.place(x=100, y=340)
ex = Button(root,text="Exit", command=Exit,bg="Black",fg="sky blue",width=10)

ex.config(font=("Times",15,"bold"))

ex.place(x=1100,y=650)

Login_page.py

import tkinter as tk

from tkinter import *

import PIL

root = Toplevel()
root.wm_attributes("-fullscreen", True)

from tkinter import messagebox

def Exit():

qExit=messagebox.askyesno("System","Do you want to exit the system")

if qExit:

root.destroy()

exit()

39

def usermodule():

import login_form

def adminmodule():

import admin_module

bg = PhotoImage(file = "C:\\Users\\Abinaya\\Desktop\\fmp1\\e.png")

bg_label = Label(root, image = bg)

bg_label.place(x=100, y=150)

bg_label.image = bg

dst=Button(root,text="User",command=usermodule,bg="#FFA781",fg="#5B0E2D

",width=10)

dst.config(font=("Times",15,"bold"))

dst.place(x=970, y=300)

rnf=Button(root,text="Admin",command=adminmodule,bg="#FFD55A",fg="#293

250",

width=10)

rnf.config(font=("Times",15,"bold"))

rnf.place(x=970, y=580)

ex = Button(root,text="Exit", command=Exit,bg="Black",fg="sky blue",width=10)

ex.config(font=("Times",15,"bold"))

ex.place(x=1100,y=650)

photo = PhotoImage(file = "C:\\Users\\Abinaya\\Desktop\\fmp1\\admin.png")

photo_label = Label(root, image = photo)

photo_label.place(x=950, y=400)

photo_label.image = photo

user = PhotoImage(file = "C:\\Users\\Abinaya\\Desktop\\fmp1\\person-male.png")

user_label = Label(root, image = user)

user_label.place(x=950, y=120)

user_label.image = user

root.mainloop()

Login_form.py

from tkinter import *

import sqlite3

root = Toplevel()

root.geometry('500x500')

root.title("Login Form")

email=StringVar()

password=StringVar()

40

def database():

global conn, cursor

conn = sqlite3.connect('database.db')

cursor = conn.cursor()

email1 = email.get()

password1 = password.get()

if email1 == "" or password1 == "":

lbl_text.config(text="Please complete the required field!", fg="red")

else:

cursor.execute("SELECT * FROM `PatientDetails` WHERE `Email` = ? AND

`Password` = ?", (email1, password1))

if cursor.fetchone() is not None:

lbl_text.config(text="Login Successful", fg="red")

#HomeWindow()

email.set("")
password.set("")

#lbl_text.config(text="")

f = open('email.txt', 'w')

f.truncate(0)

f.write(email1)

f.close()

import user_module

else:

lbl_text.config(text="Invalid username or password", fg="red")

email.set("")

password.set("")

cursor.close()

conn.close()

def sign_up():

import sign_up_form

bg = PhotoImage(file = "C:\\Users\\Abinaya\\Desktop\\fmp1\\login.png")

bg_label = Label(root, image = bg)

bg_label.place(x=0, y=0)

bg_label.image = bg

label_1 = Label(root, text="Email",width=20,font=("bold", 11),fg='#5300C6')

label_1.place(x=80,y=130)

entry_1 = Entry(root,textvar=email,width=30)

entry_1.place(x=260,y=130)

label_2 = Label(root, text="Password",width=20,font=("bold", 11),fg='#5300C6')

41

label_2.place(x=80,y=180)
entry_2 = Entry(root,textvar=password, show="*",width=30)

entry_2.place(x=260,y=180)

Button(root,text='LOGIN',width=20,font=("bold",10),bg='#143D59',fg='#F4B41A'

,com mand=database).place(x=195,y=250)

Button(root,text='NEWUSER>SIGNUP',width=20,font=("bold",10),bg='#143D59'

,fg='# F4B41A',command=sign_up).place(x=195,y=330)

Form = Frame(root, height=200)

Form.pack(side=TOP, pady=20)

lbl_text = Label(Form)

lbl_text.grid(row=2, columnspan=2)

root.mainloop()

Signup_form.py

from tkinter import *

import sqlite3

root = Toplevel()

root.geometry('500x500')

root.title("Registration Form")

def login():

import login_form

def database_s():

name1=name.get()

email1=email.get()

password1=password.get()

age1=age.get()

gender1=gender.get()

if(gender1 == 1):

g = "Male"

else:

g = "Female"

conn = sqlite3.connect('database.db')

if email1 == "" or password1 == "" or name1 == "" or age1 == "" or gender1

== "":

lbl_text.config(text="Please complete the required field!", fg="red")

elif not age1.isnumeric():

lbl_text.config(text="Age must be an Integer", fg="red")

else:

with conn:

42

cursor=conn.cursor()
cursor.execute('CREATE TABLE IF NOT EXISTS PatientDetails (Name

TEXT,Email TEXT,Password TEXT,Age INTEGER,Gender TEXT)')

cursor.execute('INSERTINTOPatientDetails(Name,Email,Password,Age,Gender)

VALUES(?,?,?,?,?)',(name1,email1,password1,age1,g))

conn.commit()
lbl_text.config(text="Sign Up Successful", fg="red")

login()

name=StringVar()

email=StringVar()

password=StringVar()

age=StringVar()

gender=IntVar()

g = StringVar()

bg = PhotoImage(file = "C:\\Users\\Abinaya\\Desktop\\fmp1\\signup.png")

bg_label = Label(root, image = bg)

bg_label.place(x=50, y=0)

bg_label.image = bg

label_1 = Label(root, text="Name",width=20,font=("bold", 11),fg='#5300C6')

label_1.place(x=80,y=130)

entry_1 = Entry(root,textvar=name,width=30)

entry_1.place(x=240,y=130)

label_2 = Label(root, text="Email",width=20,font=("bold", 11),fg='#5300C6')

label_2.place(x=80,y=180)

entry_2 = Entry(root,textvar=email,width=30)

entry_2.place(x=240,y=180)

label_3 = Label(root, text="Password",width=20,font=("bold", 11),fg='#5300C6')

label_3.place(x=80,y=230)

entry_3 = Entry(root,textvar=password,show="*",width=30)

entry_3.place(x=240,y=230)

label_5 = Label(root, text="Age",width=20,font=("bold", 11),fg='#5300C6')

label_5.place(x=80,y=280)

entry_5 = Entry(root,textvar=age,width=30)

entry_5.place(x=240,y=280)

label_4 = Label(root, text="Gender",width=20,font=("bold", 11),fg='#5300C6')

label_4.place(x=80,y=330)

Radiobutton(root, text="Male",padx = 5, variable=gender,

value=1).place(x=235,y=330)

43

Radiobutton(root,text="Female",padx=20,variable=gender,

value=2).place(x=290,y=330)

b1=Button(root,text='SUBMIT',width=15,font=("bold",10),bg='#143D59',fg='#F4

B41A', command=database_s).place(x=180,y=400)

b1=Button(root,text='LOGIN',width=15,font=("bold",10),bg='#143D59',fg='#F4B

41A',

command=login).place(x=180,y=450)

#root.bind("<Return>",database_s)

Form = Frame(root, height=200)

Form.pack(side=TOP, pady=20)

lbl_text = Label(Form)

lbl_text.grid(row=2, columnspan=2)

root.mainloop()

User_module.py

import tkinter as tk

from tkinter import *

from tkinter import messagebox

root = Toplevel()

root.wm_attributes("-fullscreen", True)

from tkinter import messagebox

def Exit():

qExit=messagebox.askyesno("System","Do you want to exit the system")

if qExit:

root.destroy()

exit()

def checkdisease():
import PythonCodeOfAlgorithm

def history():

import history

def feedback():

import feedback
bg = PhotoImage(file = "C:\\Users\\Abinaya\\Desktop\\fmp1\\h.png")

bg_label = Label(root, image = bg)

bg_label.place(x=100, y=50)

bg_label.image = bg

dst=Button(root,text="CheckDisease",command=checkdisease,bg="#FFA781",fg=

"#5B0E2D",width=20)

dst.config(font=("Times",15,"bold"))

44

dst.place(x=1000, y=200)

rnf=Button(root,text="History",command=history,bg="#FFD55A",fg="#293250",

width=20)

rnf.config(font=("Times",15,"bold"))

rnf.place(x=1000, y=300)

ex=Button(root,text="Feedback",command=feedback,bg="#00E1D9",fg="#5E001

F",

width=20)

ex.config(font=("Times",15,"bold"))

ex.place(x=1000,y=400)

ex = Button(root,text="Exit", command=Exit,bg="Black",fg="sky blue",width=10)

ex.config(font=("Times",15,"bold"))

ex.place(x=1100,y=650)

CheckDisease.py

import tkinter

from tkinter import *

import sqlite3

import numpy as np

import pandas as pd

import sklearn

import os

pred1=StringVar()

def DecisionTree():

if len(NameEn.get()) == 0:

pred1.set(" ")

comp=messagebox.askokcancel("System","Kindly Fill the Name")

if comp:

root.mainloop()
elif((Symptom1.get()=="Select Here") or (Symptom2.get()=="Select Here")):

pred1.set(" ")

sym=messagebox.askokcancel("System","Kindly Fill atleast first two

Symptoms")

if sym:

root.mainloop()

else:

print("NAME: "+NameEn.get())

from sklearn import tree

45

clf3 = tree.DecisionTreeClassifier()

clf3 = clf3.fit(X,y)

from sklearn.metrics import

classification_report,confusion_matrix,accuracy_score

y_pred1=clf3.predict(X_test)

psymptoms =

[Symptom1.get(),Symptom2.get(),Symptom3.get(),Symptom4.get(),Symptom5.get

()]

for p in range(0,len(l1)):

for x in psymptoms:

if(x==l1[p]):

l2[p]=1

input= [l2]
predict = clf3.predict(input)

predicted=predict[0]

b='no'
for i in range(0,len(disease)):

if(predicted == i):

b='yes'

break

if (b=='yes'):
pred1.set(" ")

pred1.set(disease[a])

else:

pred1.set(" ")

pred1.set("Not Found")

import sqlite3
conn = sqlite3.connect('database.db')

c = conn.cursor()

c.execute("CREATE TABLE IF NOT EXISTS DecisionTree(Name

StringVar,Age INTEGER, Email StringVar,Symtom1 StringVar,Symtom2

StringVar,Symtom3 StringVar,Symtom4 TEXT,Symtom5 TEXT,Disease

StringVar)")

c.execute("INSERT INTO

DecisionTree(Name,Age,Email,Symtom1,Symtom2,Symtom3,Symtom4,Symtom5

,Disease)

46

VALUES(?,?,?,?,?,?,?,?,?)",(NameEn.get(),AgeEn.get(),EmailEn.get(),Symptom1.

get(),Symptom2.get(),Symptom3.get(),Symptom4.get(),Symptom5.get(),pred1.get(

)))

conn.commit()

c.close()

conn.close()

pred2=StringVar()

def randomforest():

if len(NameEn.get()) == 0:

pred2.set(" ")

comp=messagebox.askokcancel("System","Kindly Fill the Name")

if comp:

root.mainloop()

elif((Symptom1.get()=="Select Here") or (Symptom2.get()=="Select Here")):

pred2.set(" ")

sym=messagebox.askokcancel("System","Kindly Fill atleast first two

Symptoms")

if sym:
root.mainloop()

else:

from sklearn.ensemble import RandomForestClassifier

clf4 = RandomForestClassifier(n_estimators=100)

clf4 = clf4.fit(X,np.ravel(y))

from sklearn.metrics import

classification_report,confusion_matrix,accuracy_score

y_pred2=clf4.predict(X_test)

psymptoms =

[Symptom1.get(),Symptom2.get(),Symptom3.get(),Symptom4.get(),Symptom5.get

()]

for p in range(0,len(l1)):

for x in psymptoms:

if(x==l1[p]):

l2[p]=1

input = [l2]
predict = clf4.predict(input)

predicted=predict[0]

47

b='no'
for i in range(0,len(disease)):

if(predicted == i):

b='yes'

break

if (b=='yes'):
pred2.set(" ")

pred2.set(disease[a])

else:

pred2.set(" ")

pred2.set("Not Found")

import sqlite3
conn = sqlite3.connect('database.db')

c = conn.cursor()

c.execute("CREATE TABLE IF NOT EXISTS RandomForest(Name

StringVar,Age INTEGER, Email StringVar,Symtom1 StringVar,Symtom2

StringVar,Symtom3 StringVar,Symtom4 TEXT,Symtom5 TEXT,Disease

StringVar)")

c.execute("INSERT INTO

RandomForest(Name,Age,Email,Symtom1,Symtom2,Symtom3,Symtom4,Symtom

5,Disease)

VALUES(?,?,?,?,?,?,?,?,?)",(NameEn.get(),AgeEn.get(),EmailEn.get(),Symptom1.

get(),Symptom2.get(),Symptom3.get(),Symptom4.get(),Symptom5.get(),pred2.get(

)))

conn.commit()

c.close()

conn.close()

pred4=StringVar()

def KNN():

if len(NameEn.get()) == 0:

pred4.set(" ")

comp=messagebox.askokcancel("System","Kindly Fill the Name")

if comp:

root.mainloop()

elif((Symptom1.get()=="Select Here") or (Symptom2.get()=="Select Here")):

pred4.set(" ")

sym=messagebox.askokcancel("System","Kindly Fill atleast first two

Symptoms")

if sym:

48

root.mainloop()
else:

from sklearn.neighbors import KNeighborsClassifier

knn=KNeighborsClassifier(n_neighbors=5,metric='minkowski',p=2)

knn=knn.fit(X,np.ravel(y))

from sklearn.metrics import

classification_report,confusion_matrix,accuracy_score

y_pred3=knn.predict(X_test)

psymptoms =

[Symptom1.get(),Symptom2.get(),Symptom3.get(),Symptom4.get(),Symptom5.get

()]

for k in range(0,len(l1)):

for z in psymptoms:

if(z==l1[k]):

l2[k]=1

input = [l2]

predict = clf4.predict(input)

predicted=predict[0]

b='no'

for i in range(0,len(disease)):

if(predicted == i):

b='yes'

break

if (b=='yes'):

pred4.set(" ")

pred4.set(disease[a])

else:
pred4.set(" ")

pred4.set("Not Found")

import sqlite3

conn = sqlite3.connect('database.db')

c = conn.cursor()

c.execute("CREATE TABLE IF NOT EXISTS KNearestNeighbour(Name

StringVar,Age INTEGER, Email StringVar,Symtom1 StringVar,Symtom2

StringVar,Symtom3 StringVar,Symtom4 TEXT,Symtom5 TEXT,Disease

StringVar)")

49

c.execute("INSERTINTOKNearestNeighbour(Name,Age,Email,Symtom1,Symto

m2,Symtom3,Symtom4,Symtom5,Disease)VALUES(?,?,?,?,?,?,?,?,?)",(NameEn.g

et(),AgeEn.get(),EmailEn.get(),Symptom1.get(),Symptom2.get(),Symptom3.get(),

Symptom4.get(),Symptom5.get(),pred4.get()))

conn.commit()

c.close()

conn.close()

pred3=StringVar()

def NaiveBayes():

if len(NameEn.get()) == 0:

pred3.set(" ")

comp=messagebox.askokcancel("System","Kindly Fill the Name")

if comp:

root.mainloop()

elif((Symptom1.get()=="Select Here") or (Symptom2.get()=="Select Here")):

pred3.set(" ")

sym=messagebox.askokcancel("System","Kindly Fill atleast first two

Symptoms")

if sym:
root.mainloop()

else:

from sklearn.naive_bayes import GaussianNB

gnb = GaussianNB()

gnb=gnb.fit(X,np.ravel(y))

from sklearn.metrics import

classification_report,confusion_matrix,accuracy_score

y_pred4=gnb.predict(X_test)

print("Naive Bayes")

print("Accuracy : ",end="")

print(int(accuracy_score(y_test, y_pred4)*100),end="")

print("%")

#print(accuracy_score(y_test, y_pred4,normalize=False))

psymptoms =

[Symptom1.get(),Symptom2.get(),Symptom3.get(),Symptom4.get(),Symptom5.get

()]

for k in range(0,len(l1)):

for z in psymptoms:

50

if(z==l1[k]):

l2[k]=1

input = [l2]

predict = clf4.predict(input)

predicted=predict[0]

b='no'
for i in range(0,len(disease)):

if(predicted == i):

b='yes'

break

if (b=='yes'):
pred3.set(" ")

pred3.set(disease[a])

else:

pred3.set(" ")

pred3.set("Not Found")

import sqlite3

conn = sqlite3.connect('database.db')

c = conn.cursor()

c.execute("CREATE TABLE IF NOT EXISTS NaiveBayes(Name

StringVar,Age INTEGER, Email StringVar,Symtom1 StringVar,Symtom2

StringVar,Symtom3 StringVar,Symtom4 TEXT,Symtom5 TEXT,Disease

StringVar)")

c.execute("INSERT INTO

NaiveBayes(Name,Age,Email,Symtom1,Symtom2,Symtom3,Symtom4,Symtom5,

Disease)

VALUES(?,?,?,?,?,?,?,?,?)",(NameEn.get(),AgeEn.get(),EmailEn.get(),Symptom1.

get(),Symptom2.get(),Symptom3.get(),Symptom4.get(),Symptom5.get(),pred3.get(

)))

conn.commit()

c.close()

conn.close()

root.configure(background='Black')

root.title('Disease Prediction Based on Symptoms using Machine Learning')

root.wm_attributes("-fullscreen", True)

Symptom1 = StringVar()

Symptom1.set("Select Here")

Symptom2 = StringVar()

51

Symptom2.set("Select Here")

Symptom3 = StringVar()

Symptom3.set("Select Here")

Symptom4 = StringVar()

Symptom4.set("Select Here")

Symptom5 = StringVar()

Symptom5.set("Select Here")

f = open("email.txt")

e = f.read() #email

f.close()

con1 = sqlite3.connect("database.db")

cur1 = con1.cursor()

cur1.execute("SELECT Name FROM PatientDetails where `Email`= ?",(e,))

n = cur1.fetchone() #name

cur1.execute("SELECT Age FROM PatientDetails where `Email`= ?",(e,))

a = cur1.fetchone() #age

cur1.close()

con1.close()

Name = StringVar()

Name.set(n)

Age = StringVar()

Age.set(a)

Email = StringVar()

Email.set(e)

prev_win=None

def Reset():

global prev_win

Symptom1.set("Select Here")

Symptom2.set("Select Here")

Symptom3.set("Select Here")

Symptom4.set("Select Here")

Symptom5.set("Select Here")

#NameEn.delete(first=0,last=100)

#AgeEn.delete(first=0,last=100)

#EmailEn.delete(first=0,last=100)

pred1.set(" ")

pred2.set(" ")

pred3.set(" ")

52

pred4.set(" ")

try:

prev_win.destroy()

prev_win=None

except AttributeError:

pass

#Exit button to come out of system

from tkinter import messagebox

def Exit():

qExit=messagebox.askyesno("System","Do you want to exit the system")

if qExit:

root.destroy()

exit()

def History():

import history

History.py

from tkinter import ttk

import tkinter as tk

from tkinter import *

import sqlite3

from tkinter import messagebox

f = open('email.txt', 'r')

email = f.read()

f.close()

#print(email)

def dec():

tree.delete(*tree.get_children())
con1 = sqlite3.connect("database.db")

cur1 = con1.cursor()

cur1.execute("SELECT * FROM DecisionTree where `Email`= ?",(email,))

rows = cur1.fetchall()

for row in rows:

#print(row)

tree.insert("", tk.END, values=row)

con1.close()

def naive():

tree.delete(*tree.get_children())

con1 = sqlite3.connect("database.db")

cur1 = con1.cursor()

53

cur1.execute("SELECT * FROM NaiveBayes where `Email`= ?",(email,))

rows = cur1.fetchall()

for row in rows:

#print(row)

tree.insert("", tk.END, values=row)

con1.close()

def knn():

tree.delete(*tree.get_children())

con1 = sqlite3.connect("database.db")

cur1 = con1.cursor()

cur1.execute("SELECT * FROM KNearestNeighbour where `Email`=

?",(email,))

rows = cur1.fetchall()

for row in rows:

#print(row)

tree.insert("", tk.END, values=row)

con1.close()

def random():

tree.delete(*tree.get_children())

con1 = sqlite3.connect("database.db")

cur1 = con1.cursor()

cur1.execute("SELECT * FROM RandomForest where `Email`= ?",(email,))

rows = cur1.fetchall()

for row in rows:

#print(row)

tree.insert("", tk.END, values=row)

con1.close()

def Exit():

qExit=messagebox.askyesno("System","Do you want to exit the system")

if qExit:

root.destroy()

exit()

def feedback():

import feedback

root = tk.Tk()

root.geometry("1290x800")

root.title("History")

style = ttk.Style()
style.configure("Treeview.Heading", font=("Times",15,"bold"))

54

tree = ttk.Treeview(root, column=("c1", "c2", "c3","c4","c5","c6","c7","c8","c9"),

show='headings')

tree.column("#1",minwidth=0, width=100, stretch="NO")

tree.heading("#1", text="Name")

tree.column("#2",minwidth=0, width=100, stretch="NO")

tree.heading("#2", text="Age")

tree.column("#3",minwidth=0, width=150, stretch="NO")

tree.heading("#3", text="Email")

tree.column("#4",minwidth=0, width=150, stretch="NO")

tree.heading("#4", text="s1")

tree.column("#5",minwidth=0, width=150, stretch="NO")

tree.heading("#5", text="s2")

tree.column("#6",minwidth=0, width=150, stretch="NO")

tree.heading("#6", text="s3")

tree.column("#7",minwidth=0, width=150, stretch="NO")

tree.heading("#7", text="s4")

tree.column("#8", minwidth=0, width=150, stretch="NO")

tree.heading("#8", text="s5")

tree.column("#9", minwidth=0, width=200, stretch="NO")

tree.heading("#9", text="Disease")

tree.pack()

tk.Button(root,text='DecisionTree',width=20,bg='brown',fg='white',command=dec)

.place(x=550,y=400)

tk.Button(root,text='NaiveBayes',width=20,bg='brown',fg='white',command=naive

).place(x=550,y=450)

tk.Button(root,text='RandomForest',width=20,bg='brown',fg='white',command=ran

dom).place(x=550,y=500)

tk.Button(root,

text='KNN',width=20,bg='brown',fg='white',command=knn).place(x=550,y=550)

tk.Button(root,text='Feedback',bg="Black",fg="Blue",font=("Times",15,"bold"),wi

dth=10,command=feedback).place(x=1120,y=555)

tk.Button(root,text='Exit',bg="Black",fg="Blue",font=("Times",15,"bold"),width=

10,command=Exit).place(x=1120,y=605)

root.mainloop()

Feedback.py

from tkinter import *
from tkinter import messagebox

import sqlite3

from tkinter import messagebox

55

root = Toplevel()

root.geometry('900x900')

root.title("Feedback Form")

f = open('email.txt', 'r')

email = f.read()

f.close()

def database_s():
conn = sqlite3.connect('database.db')

if Name == "" or Comments == "":

lbl_text.config(text="Please complete the required field!", fg="red")

else:

with conn:

cursor=conn.cursor()

cursor.execute("CREATE TABLE IF NOT EXISTS Feedback (Id

INTEGER, Name StringVar,Comments StringVar)")

cursor.execute("INSERTINTOFeedback(Name,Comments)VALUES(?,?)",(entry_

1.get(),entry_2.get()))

conn.commit()

cursor.close()

conn.close()

messagebox.showinfo(title = "Feedback", message = "Feedback Submitted!")

def clear():

Name.set(" ")

Comments.set(" ")

def Exit():

qExit=messagebox.askyesno("System","Do you want to exit the system")

if qExit:

root.destroy()

exit()

f = open("email.txt")
e = f.read() #email

f.close()

con2 = sqlite3.connect("database.db")

cur2 = con2.cursor()

cur2.execute("SELECT Name FROM PatientDetails where `Email`= ?",(e,))

56

n = cur2.fetchone() #name

cur2.close()

con2.close()

print(n)

Name=StringVar()

Name.set(n)

Comments=StringVar()

bg = PhotoImage(file ="C:\\Users\\Abinaya\\Desktop\\fmp1\\feedback.png")

bg_label = Label(root, image = bg)

bg_label.place(x=250, y=120)

bg_label.image = bg

label_1 = Label(root, text="Tell us what you think !",width=20,font=("bold",

17),fg='#e52165',bg='#0d1137')

label_1.place(x=320,y=50)

label_2 = Label(root, text="Name",width=20,font=("bold", 13),fg='#5300C6',)

label_2.place(x=150,y=330)

entry_1 = Entry(root,textvariable=Name, state=DISABLED,width=53)

entry_1.place(x=340,y=330)

label_2 = Label(root, text="Comments",width=20,font=("bold", 13),fg='#5300C6')

label_2.place(x=150,y=380)

entry_2 = Entry(root,textvariable=Comments, width=53)

entry_2.place(x=340,y=380)

Button(root,text='SUBMIT',width=20,font=("bold",12),bg='#F9868B',fg='#761137

',command=database_s).place(x=395,y=470)

Button(root,text='CLEAR',width=20,font=("bold",12),bg='#F9868B',fg='#761137',

command=clear).place(x=395,y=520)

Button(root,text='Exit',bg="Black",fg="SkyBlue",font=("Times",15,"bold"),width

=10,command=Exit).place(x=1120,y=605)

Form = Frame(root, height=200)

Form.pack(side=TOP, pady=20)

lbl_text = Label(Form)

lbl_text.grid(row=2, columnspan=2)

root.mainloop()

57

REFERENCES

1. D. Dahiwade, G. Patle and E. Meshram, "Designing Disease Prediction Model

Using Machine Learning Approach," 2019 3rd International Conference on

Computing Methodologies and Communication (ICCMC), Erode, India,

2019, pp. 1211-1215, doi: 10.1109/ICCMC.2019.8819782.

2. S. Vijava Shetty, G. A. Karthik and M. Ashwin, "Symptom Based Health

Prediction using Data Mining," 2019 International Conference on

Communication and Electronics Systems (ICCES), Coimbatore, India, 2019,

pp. 744-749, doi: 10.1109/ICCES45898.2019.9002132.

3 S. Grampurohit and C. Sagarnal, "Disease Prediction using Machine

Learning Algorithms," 2020 International Conference for Emerging

Technology (INCET), Belgaum, India, 2020, pp. 1-7,

doi:10.1109/INCET49848.2020.9154130.

4. R. Lee and C. Chitnis, "Improving Health-Care Systems by Disease

Prediction," 2018 International Conference on Computational Science and

Computational Intelligence (CSCI), Las Vegas, NV, USA, 2018, pp. 726-731,

doi: 10.1109/CSCI46756.2018.00145.

5. F. Huang, S. Wang and C. Chan, "Predicting disease by using data mining

based on healthcare information system," 2012 IEEE International

Conference on Granular Computing, 2012, pp. 191-194, doi:

10.1109/GrC.2012.646869

58

6. A. Gavhane, G. Kokkula, I. Pandya and K. Devadkar, "Prediction of Heart

Disease Using Machine Learning," 2018 Second International Conference on

Electronics, Communication and Aerospace Technology (ICECA),

Coimbatore, India, 2018, pp. 1275-1278, doi: 10.1109/ICECA.2018.8474922.

7. M. Shankar, M. Pahadia, D. Srivastava, T. S. Ashwin and G. R. M. Reddy,

"A Novel Method for Disease Recognition and Cure Time Prediction Based

on Symptoms," 2015 Second International Conference on Advances in

Computing and Communication Engineering, Dehradun, India, 2015, pp. 679-

682, doi: 10.1109/ICACCE.2015.66.

8. M. Chen, Y. Hao, K. Hwang, L. Wang and L. Wang, "Disease Prediction by

Machine Learning Over Big Data From Healthcare Communities," in IEEE

Access, vol. 5, pp. 8869-8879, 2017, doi: 10.1109/ACCESS.2017.2694446.

9. H. Q. Yu, "Experimental Disease Prediction Research on Combining Natural

Language Processing and Machine Learning," 2019 IEEE 7th International

Conference on Computer Science and Network Technology (ICCSNT),

Dalian, China, 2019, pp. 145-150, doi:

10.1109/ICCSNT47585.2019.8962507.

10. P. Hamsagayathri and S. Vigneshwaran, "Symptoms Based Disease

Prediction Using Machine Learning Techniques," 2021 Third International

Conference on Intelligent Communication Technologies and Virtual Mobile

Networks (ICICV), 2021, pp. 747-752, doi:

10.1109/ICICV50876.2021.9388603.

59

11. P. Zhang, X. Huang and M. Li, "Disease Prediction and Early Intervention

System Based on Symptom Similarity Analysis," in IEEE Access, vol. 7, pp.

176484-176494, 2019, doi: 10.1109/ACCESS.2019.29578

12. Al-Aidaroos, K., Bakar, A., & Othman, Z. (2012). Medical Data

Classification with Naive Bayes Approach. Information Technology Journal.

13. Ashish Chhabbi, LakhanAhuja, SahilAhir, and Y. K. Sharma,19 March

2016,“Heart Disease Prediction Using Data Mining Techniques”,

International Journal of Research in Advent Technology,E-ISSN:2321-

9637,Special Issue National Conference “NCPC-2016”, pp. 104-106.

14. H. Yin and N. K. Jha, "A Health Decision Support System for Disease

Diagnosis Based on Wearable Medical Sensors and Machine Learning

Ensembles," in IEEE Transactions on Multi-Scale Computing Systems, vol.

3, no. 4, pp. 228-241, 1 Oct.-Dec. 2017, doi:

10.1109/TMSCS.2017.2710194.

15. B. Nithya and V. Ilango, "Predictive analytics in health care using machine

learning tools and techniques," 2017 International Conference on Intelligent

Computing and Control Systems (ICICCS), 2017, pp. 492-499, doi:

10.1109/ICCONS.2017.8250771.

16. F. Rustam et al., "COVID-19 Future Forecasting Using Supervised Machine

Learning Models," in IEEE Access, vol. 8, pp. 101489-101499, 2020, doi:

10.1109/ACCESS.2020.2997311.

17. M. A. Khan, "An IoT Framework for Heart Disease Prediction Based on

60

MDCNN Classifier," in IEEE Access, vol. 8, pp. 34717-34727, 2020, doi:

10.1109/ACCESS.2020.2974687.

18. F. Ahamed and F. Farid, "Applying Internet of Things and Machine-

Learning for Personalized Healthcare: Issues and Challenges," 2018

International Conference on Machine Learning and Data Engineering

(iCMLDE), 2018, pp. 19-21, doi: 10.1109/iCMLDE.2018.00014.

19. W. H. S. D. Gunarathne, K. D. M. Perera and K. A. D. C. P.

Kahandawaarachchi, "Performance Evaluation on Machine Learning

Classification Techniques for Disease Classification and Forecasting through

Data Analytics for Chronic Kidney Disease (CKD)," 2017 IEEE 17th

International Conference on Bioinformatics and Bioengineering (BIBE),

2017, pp. 291-296, doi: 10.1109/BIBE.2017.00-39.

20. K. Shailaja, B. Seetharamulu and M. A. Jabbar, "Machine Learning in

Healthcare: A Review," 2018 Second International Conference on

Electronics, Communication and Aerospace Technology (ICECA), 2018, pp.

910-914, doi: 10.1109/ICECA.2018.8474918.

61

