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ABSTRACT 

 

The e-commerce web sites are designed in a way for their 

customers or clients to share their reviews and comments on the products 

through ratings. The ratings provide a sign about the where the products 

stand in the market while at the same time provide an opinion about the 

products when customers view the website for purchasing a product. 

Since the evolution of social networks, people have started to express 

their opinions in the form of the blogs or facebook posts or tweets starting 

from the products people buy to the presidential candidate they support. 

When searched for a particular product on the web, the current day search 

engines show the list of websites which gives the features of the product 

and their prices. But, the users can be given much more info about the 

product using the reviews about the searched product. Thus, a new type 

of module can be designed which will not only retrieve facts, but will also 

enable the retrieval of opinions of the users about the product. We create 

a module which, when searched for a product, gives the highlighted 

features of the product and score and some of the helpful reviews (instead 

of the user scrolling through all the reviews to know about the product). 

This project proposes a system that provides the users an authentication 

of any product they wish, based on the online reviews and comments 

posted by the customers who have already had an experience of it. It aims 

to provide summarized positive and negative features about products and 

services by analyzing their online reviews platform is available. Neutral 

and veracious reviews help online users in making a right decision for 

themselves and obtaining the right product suited for them.  Reviews act 

as a trust-building mechanism and creates a good relationship between 

the involved entities. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 E-COMMERCE 

Electronic commerce or e-commerce (sometimes written as 

eCommerce) is a business model that lets firms and individuals buy and 

sell things over the internet.E-commerce, which can be conducted over 

computers, tablets, or smartphones may be thought of like a digital 

version of mail-order catalog shopping. Nearly every imaginable product 

and service is available through e-commerce transactions, including 

books, music, plane tickets, and financial services such as stock 

investing and online banking. As such, it is considered a very disruptive 

technology.Major E-commerce websites used in India shown below in 

figure 1.1.1 

                   

                                    Figure 1.1: E-com websites 

 The Indian e-commerce scene has a nice mix between pure e-commerce 

players and brick, and mortar retailers turned e-commerce giants. While 

the Indian e-commerce sector is still in early development stages, it is a 

https://www.investopedia.com/terms/b/businessmodel.asp
https://www.investopedia.com/articles/etfs-mutual-funds/080516/4-etfs-fang-stocks-fdnpnqiqqqskyy.asp
https://www.investopedia.com/articles/etfs-mutual-funds/080516/4-etfs-fang-stocks-fdnpnqiqqqskyy.asp
https://www.investopedia.com/terms/d/disruptive-technology.asp
https://www.investopedia.com/terms/d/disruptive-technology.asp
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market rich with opportunity; with so many people comes so much room 

for major players and small players alike to take a giant chunk out of the 

Indian e-commerce pie.   

 

Top 10 Ecommerce Sites in India 2020 

 Amazon India 

 Flipkart 

 Alibaba 

 Snapdeal 

 Myntra 

 IndiaMART 

 Book My Show 

 Nykaa 

 Firstcry 

 1mg 

 

American e-commerce giant, Amazon, is said to have an audience reach 

of 89 percent in India, according to Statista. Since launching in India in 

2010, the site now generates an estimated 322.54 million monthly visitors, 

making it the highest performing site in the country, by a long shot. True 

to the overall statistics that the primary e-commerce category in India is 

electronics.When searched for a particular product on the web, the current 

day search engines show the list of websites which gives the features of 

the product and their prices.So we create a module which, when searched 

for a product, gives the highlighted features of the product and score and 

some of the helpful reviews [19]. 

 

 

https://www.statista.com/topics/2454/e-commerce-in-india/
https://www.statista.com/topics/2454/e-commerce-in-india/
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1.2 OBJECTIVE  

           The main objective of the project is to provide the customer the 

easier understanding about the product. The user who want to buy a 

product did not need to study the whole review to know about the 

product. By classifying product reviews into positive, negative and 

neutral the customer can read reviews according to his choice. By giving 

score to features for the product the customer can easily get a clear idea 

about the product. 

 

1.3 PROBLEM STATEMENT  

           The features of the product is the important thing which make 

customers buy it. Each product has its own advantage and disadvantages. 

Also most of the products contains same features. But what make 

difference is build quality or quality of service. By which the product 

becomes brand. By giving feature score based on  customer review one 

who wants to buy product can easily know about and he may get a clear 

conclusion that it will satisfy his requirements or not. 

 

1.4 PROJECT OVERVIEW  

            The product reviews are first get collected from online shopping 

sites and then the collected reviews are get saved in text file. The text 

files are the datasets. Then the collected datasets are pre-processed  and 

then used for further process. 

Basically, two algorithms are used for the purpose: 

 The 1st algorithm (HAC) identifies and extracts the potential features 

from the reviews of the product.  
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The 2nd algorithm takes these potential features as input, assigns scores to 

them and finally helps in classifying every review as positive, negative or 

neutral. The scores obtained for every feature of the product can be used 

to highlight the good features of the product. 

 

1.5   SEMANTIC ANALYSIS 

Sentimental analysis is the sector of comprehending feelings and 

expression of humans which they express within the form of critiques, 

feedback, and guidelines. In this point in time, humans have the liberty to 

express themselves on numerous structures, that allow them to hook up 

with a tremendous majority of the network. those may be shared via 

various strategies, like discussion boards, YouTube channels, evaluations 

blogs, and social media posts. These facts may be shared by using every 

person, which does not necessarily, ought to be professionals of the 

sphere. The evaluation of this facts in a condensed manner can be 

classified into positive, bad or neutral in nature. And it may additionally 

be categorised primarily based on various variables. Such freedom to 

express, may additionally lead to fake statistics being shared around.  

This facilitates in producing false hype and endorsement of a private 

product schedule driven critiques end up a not unusual problem when any 

such platform is to be had. From producers to shops, absolutely everyone 

would possibly try to perplex potential clients in buying their product 

impartial and veracious evaluations assist online users in creating a right 

choice for themselves and acquiring the right product ideal for them. A 

correct analysis allows every party involved on this precise on the spot. 

The opinions act as a consider-building mechanism and creates a good 

courting between the involved entities. In gadget gaining knowledge of, 
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category is used to classify a new statement into a specific set/class based 

totally on a training set of information containing observations whose 

class is thought earlier.  

The maximum commonplace example is “junk mail” or “non-junk 

mail” training for emails. In E-trade, classifier algorithms can be used to 

classify sentiments of evaluation primarily based on phrases. The 

particular phrases within the language are categorised earlier for their 

high-quality or poor sentiments. Mastering training set has efficaciously 

recognized observations. Classifier algorithms are used to create 

cluster/units from the uncategorized unsupervised records primarily based 

on similarity and/or distance from the schooling facts set. 

 

1.6 NATURAL LANGUAGE PROCESSING  

                     

 

                       Figure 1.2: NLP 
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Natural language processing (NLP) is the intersection of computer 

technology, linguistics natural language and NLP is all approximately 

making computer systems apprehend and generate human language 

programs of NLP strategies include voice assistants like Amazon's Alexa 

and Apple's Siri, but additionally such things as machine translation and 

textual content filtering. NLP has closely benefited from current advances 

in machine learning, specially from deep learning techniques. The sphere 

is split into the three components: Speech popularity , the translation of 

spoken language into text. Natural Language technology. The era of 

natural language with the aid of a computer scientific improvements in 

NLP can be divided into three classes (Rule-based systems, Classical 

machine learning models and Deep learning models). 

Rule-based systems totally rely closely on crafting area-particular 

regulations (e.g., everyday expressions), can be used to solve easy 

problems inclusive of extracting dependent records (e.g., emails) from 

unstructured information (e.g., web-pages), but due to the complexity of 

natural human languages, rule-based totally structures fail to build models 

that can purpose about language. 

Classical machine learning strategies may be used to solve extra hard 

troubles which rule-primarily based systems can’t solve very well (e.g., 

spam Detection), it relies on an extra well known approach to 

understanding language, the usage of hand crafted capabilities (e.g., 

sentence length, part of speech tags, the incidence of precise words) then 

supplying the ones functions to a statistical device mastering version 

(e.g., Naive Bayes), which learns exceptional patterns in the schooling set 

after which be able to purpose approximately unseen records (inference). 
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Deep learning models are the hottest a part of NLP research and 

applications now. They generalize even better than the classical machine 

knowledge of processes as they don’t want hand crafted functions 

because they routinely works as feature extractors, which helped lots in 

building end to quit fashions (little human-interplay) aside from the 

feature engineering part, deep learning algorithms getting to know 

abilities are more effective than the shallow/classical ML ones, which 

paved its manner to attaining the highest scores on different hard NLP 

tasks (e.g., Machine Translation)[21]. 

 

1.7 NATURAL LANGUAGE PROCESSING IN OPINION MINING 

One of the forms of natural language processing is opinion mining 

which offers with tracking the mood of the humans concerning a specific 

product or topic. This software program presents computerized extraction 

of critiques, emotions and sentiments in text and additionally tracks 

attitudes and emotions on the internet. People express their views by 

means of writing blog posts, feedback, critiques and tweets 

about all types of unique subjects. tracking merchandise and types and 

then figuring out whether or not they're regarded positively or 

negatively may be performed using web.  

The opinion mining has slightly exceptional tasks and plenty 

of names, e.g. sentiment evaluation, opinion extraction, sentiment mining, 

subjectivity evaluation, affect evaluation, emotion evaluation, evaluate 

mining and many others. But, all of them come under the umbrella of 

sentiment evaluation or opinion mining. Sentiment category, 

feature based totally sentiment category and opinion summarization are 

few major fields of research predominate in sentiment analysis.  
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In recent years, the system got witnessed that supporting postings in 

social media have helped reshape groups, and sway public sentiments 

and feelings, that have profoundly impacted on our social structures. It 

has hence emerged as a necessity to gather and observe evaluation at the 

web. Of route, opinionated files no longer only exist at the net (referred to 

as external facts), many corporations additionally have internal 

information, e.g., consumer comments collected from emails and phone 

centres or consequences from surveys conducted by using the 

corporations. Opinion mining may be useful in several ways. For example, 

in marketing, it tracks and judges the fulfillment price of an advert 

marketing campaign or launch of new product, 

decide popularity of products and services with its versions additionally 

inform us approximately demographics which like or 

dislike unique features[22]. 
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CHAPTER 2 

LITERATURE SURVEY 

 

2.1 EXISTING SYSTEMS  

The number of papers dealing with literature is growing exponentially. 

Several researchers have played a significant role in the development of 

useful opinion mining and product review classification algorithms. 

 

K. L. S. Kumar, J. Desai and J. Majumdar[1] concentrated on 

classifying online reviews that have been extracted from Amazon by 

using different algorithms. These algorithms that include Naive Bayes 

Classifier, Logistic Regression and SentiWordNet algorithm help in 

determining the polarity of the online reviews.  

 

Z. Singla, S. Randhawa and S. Jain  [2] focused on emotional 

sentiment analysis which not only will make it possible to classify the 

reviews as positive or negative, but also to classify their based on the 

emotion which can be of anger, fear, happiness, disappointment, etc.  

 

P. P. Surya and B. Subbulakshmi [3] have used Naïve Bayes 

Classifier for the polarity classification and analysis using R tool 

which is a data mining tool. The outcome of the process is presented 

in the form of a confusion matrix.  
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Abinash Tripathya, Ankit Agrawalb[4],Support Vector Machine 

(SVM) technique has been used by the authors  for extracting the 

polarity of a review. Analysis of frequency, precision and recall has 

been done by the authors for the proposed algorithm. The Support 

Vector Machine (SVM) technique outperforms in every case.  

 

M. S. Neethu and R. Rajasree[5],When extracting online reviews, 

one of the major concerns is of handling slang words or misspelled 

words. Regarding this problem,  developed a feature extraction 

procedure which involved vectorization and preprocessing of the text. 

Product reviews can be used to extract whether specific features of the 

product are good or bad according to the customer. 

 

 A. Agarwal, V. Sharma[6] carried out an opinion miner which was 

feature based. The main work of the miner is to find the significant 

features of the product by investigating the review and making the 

assessment profile of every product which can be utilized by the user.  

 

Y. Li, X. Feng and S. Zhang[7] have exhibited three kinds of new 

features which incorporate review density, semantic and emotions. 

The authors have provided the model and algorithm to build each 

feature. They have concluded that the proposed model, calculation and 

features are productive in fake review detection process. Regarding 

fake review detection the authors justify that the utilization of ratings 

alone to determine whether the review is phony or fake is insufficient, 

as the data that can be extracted is restricted. 
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2.2 DRAWBACKS IN THE EXISTING SYSTEM 

 

 The systems involves complex processing methods.  

 The size of the software is usually large and it isn’t compatible with 

all the systems.  

 The systems does not give score for features. 

 A generalised approach is not seen in any of the above projects. 
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CHAPTER 3 

SYSTEM DESCRIPTION 

 

The system’s algorithm is written in python and the project runs as 

an application embedded with a frontend developed using HTML, CSS 

and JS. The application runs in local IP and can also be deployed in an 

instance of a cloud or a DNS to run at a particular IP address. The 

software used in the system are described in the following sections. 

 

3.1 NATURAL LANGUAGE TOOLKIT 

NLTK is a main platform for constructing Python programs to 

work with human language records. It affords easy-to-use interfaces to 

over 50 corpora and lexical resources along with WordNet, along with a 

suite of textual content processing libraries for type, tokenization, 

stemming, tagging, parsing, and semantic reasoning, wrappers for 

industrial strength NLP libraries, and an energetic dialogue discussion 

board. NLTK has been referred to as “a outstanding tool for coaching, 

and operating in, computational linguistics using Python,” and “an terrific 

library to play with herbal language”. NLTK is suitable for linguists, 

engineers, college students, educators, researchers, and industry 

customers alike. NLTK is available for home windows, Mac OS X, and 

Linux and it is a loose, open supply, community-driven assignment[23]. 

3.2 NUMPY  

1. NumPy is the fundamental bundle for scientific computing in Python. 

it is a Python library that gives a multidimensional array object, 

diverse derived items (together with masked arrays and matrices), an 
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collection of routines for instant operations on arrays which includes 

mathematical, logical, shape manipulation, sorting, choosing, I/O, 

discrete Fourier transforms, linear algebra, statistical operations, 

random simulation and lots greater. On the core of the NumPy 

package, is the ndarray object. This encapsulates n-dimensional arrays 

of homogeneous information types, with many operations being done 

in compiled code for performance. 

3.3 PYENCHANT 

         Pyenchant is a spellchecking library for Python, primarily based on 

the splendid Enchant library. Pyenchant combines all of the capability of 

the underlying Enchant library with the power of Python and a pleasant 

“Pythonic” object-orientated interface. Pyenchant 3.2.0 Enchant is used 

to check the spelling of words and endorse corrections for phrases which 

are miss-spelled. it may use many famous spellchecking applications to 

carry out this undertaking, which include ispell, aspell and MySpell. 

3.4 SIX 

      Six is a Python 2 and 3 compatibility library. It affords software 

capabilities for smoothing over the differences between the Python 

variations with the goal of writing Python code this is well matched on 

each Python variations. Six provides easy utilities for wrapping over 

differences among Python 2 and Python three. It's far meant to support 

codebases that work on both Python 2 and 3 without modification.  Six 

consists of most effective one Python record, so it's miles painless to 

replicate into a venture. The name, “six”, comes from the fact that 

2*three equals 6. Multiplication is more effective, and, besides, “5” has 

already been snatched away via the Zope 5 mission. 
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3.5 TEXT BLOB 

TextBlob is a Python (2 and 3) library for processing textual facts. 

It presents a simple API for diving into not unusual natural language 

processing (NLP) obligations which includes element-of-speech tagging, 

noun word extraction, sentiment analysis, class, translation, and extra. 

 

3.6 TEXT TABLE 

         It is a python module, which allows us to print table on terminal. it's 

miles one of the basic python modules for reading and writing textual 

content tables in ASCII code. It pursuits to make the interface as similar 

as feasible like csv module in Python. 

 

3.7 NLTK DATA 

      The NLTK records module includes features that may be used to load 

NLTK aid files, inclusive of corpora, grammars, and saved processing 

items. Other than man or woman facts applications, the complete series 

(the usage of “all”), or just the facts required for the examples and 

exercises within the e book (using “e-book”), or simply the corpora and 

no grammars or skilled fashions (using “all-corpora”) can be downloaded. 
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CHAPTER 4 

SYSTEM DESIGN 

 

4.1 PROPOSED SYSTEM 

The system proposed to minimize the users time to understand 

about the product and to give a easiest possible understanding about the 

product and its features. Providing ranks and scores for products and its 

features provides clear vision about product in short time and also don’t 

need to study about lengthy reviews. 

 

4.2 COLLECTION OF DATA  

          The dataset for this project has been collected from various open-

source websites and shopping sites. The dataset is the pre-processed. to 

make the system processing fast unwanted words are removed from the 

reviews contained in text file. Adjectives and features are filtered out and 

scores are given for feature using algorithms. The datasets are nothing but 

text files which contain reviews. 

 

4.2.1 ATTRIBUTES REQUIRED FOR PROCESSING 

 Adjectives:  The adjectives is used to find whether the review is 

positive or negative and it is also used to give scores. 

 Nouns: The nouns are the features for which the score is given based 

on adjective count. 
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 Inversion words: These are the words which are associated with 

negations like not, no, etc. 

  The inversion words is used to find that the review is negative and 

also again it is an adjective too. So if more inversion words are related 

to noun or feature the scores will get reduce. 

 Scores: The score range from [-4 to 4] which are given to features 

based on adjectives count. 

 

4.3 MODEL DEVELOPMENT 

The model is developed using Natural language processing. NLP is an 

multi-disciplinary area of artificial intelligence. In this project linguistics 

is handled because the data sets are reviews which is human language. 

Natural language toolkit package is used to process the reviews. Natural 

language toolkit data consists of packages like chunkers, corpora, 

grammars, etc. By using algorithms potential features from reviews are 

extracted and then reviews are classified as positive, negative and neutral 

and then the scores for features are given using algorithms. 

 

4.4 NATURAL LANGUAGE PROCESSING USED 

 

      The NLP utilized in this project is semantic evaluation. Semantic 

evaluation describes the method of know-how natural language–the 

manner that people communicate–based on meaning and context. It 

allows to study how a cognitive technology like expert plays semantic 

analysis. The semantic evaluation of natural language content begins with 

the aid of analyzing all of the phrases in content to capture the actual that 
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means of any textual content. It identifies the text elements and assigns 

them to their logical and grammatical function. It analyzes context in the 

surrounding textual content and also the text shape to correctly 

disambiguate the proper meaning of words which have a couple of 

definition. Semantic era procedures the logical shape of sentences to 

discover the maximum relevant factors in text and recognize the topic 

discussed. It additionally is familiar with the relationships between 

extraordinary concepts within the textual content. For example, it knows 

that a textual content is about “politics” and “economics” despite the fact 

that it doesn’t contain the real words but relate concepts consisting of 

“election,” “Democrat,” “speaker of the house”, or “budget,” “tax” or 

“inflation”. Because semantic analysis and natural language processing 

can help machines robotically understand textual content, this supports 

the even larger aim of translating facts–that potentially treasured piece of 

patron remarks or insight in a tweet or in a customer service log–into the 

area of commercial enterprise intelligence for customer support, 

corporate intelligence or understanding management. 

4.5  SEMANTIC ANALYSIS 

      Semantic evaluation is the technique of drawing that means from text. 

It allows computer systems to recognize and interpret sentences, 

paragraphs, or complete files, by way of analyzing their grammatical 

shape, and figuring out relationships between words in a particular 

context. Its an important sub-project of natural Language Processing 

(NLP) and the riding force at the back of machine learning tools like 

chatbots, serps, and textual content analysis. Semantic analysis-driven 

tools can assist groups robotically extract meaningful data from 

unstructured records, which include emails, guide tickets, and patron 

remarks[25]. 
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4.5.1  WORKING OF SEMANTIC ANALYSIS  

Lexical semantics plays an important role in semantic evaluation, 

permitting machines to understand relationships between lexical gadgets 

(phrases, phrasal verbs, and so forth.): 

Hyponyms: Precise lexical gadgets of a established lexical item 

(hypernym) e.g. orange is a hyponym of fruit (hypernym). 

Meronomy: A logical arrangement of text and words that denotes a 

constituent part of or member of something e.g., a segment of an orange 

Polysemy:   A relationship among the meanings of phrases or terms, 

although barely unique, percentage a not unusual middle meaning e.g. I 

read a paper, and that i wrote a paper) 

Synonyms: Words that have the equal feel or almost the same which 

means as some other, e.g., glad, content, ecstatic, extremely joyful 

Antonyms: Phrases that have near contrary meanings e.g., satisfied, sad 

Homonyms:Two phrases that are sound the same and are spelled alike 

but have a unique meaning e.g., orange (color), orange (fruit) 

Semantic analysis also takes under consideration signs and emblems 

(semiotics) and collocations (words that frequently cross together). 

computerized semantic evaluation works with the help of machine 

learning algorithms. By using feeding semantically greater device getting 

to know algorithms with samples of text, you can teach machines to make 

accurate predictions based on past observations. 
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4.5.2  SEMANTIC ANALYSIS TECHNIQUES 

Relying at the form of information you’d like to attain from 

information, you may use one of two semantic evaluation techniques: a 

text type model (which assigns predefined categories to textual content) 

or a text extractor (which attracts out particular data from the text).  

Semantic classification models  

 Topic category: sorting text into predefined classes primarily based on 

its content material. Customer service teams may additionally want to 

categorise aid tickets as they drop into their help desk. Through semantic 

evaluation, device learning equipment can understand if a ticket should 

be categorized as a “payment trouble” or a “transport trouble.” 

Sentiment analysis: detecting nice, terrible, or neutral feelings in a 

textual content to indicate urgency. For instance, tagging Twitter 

mentions through sentiment to get a feel of ways clients experience 

approximately your brand, and being able to discover disgruntled 

customers in actual time.  

Intent classification: classifying text based on what customers want to 

do next. This is used to tag income emails as “involved” and “no longer 

involved” to proactively attain out to folks that can also need to attempt 

your product. 

 

Semantic Extraction models 

Keyword extraction: locating relevant phrases and expressions in a 

textual content. This approach is used alone or alongside one of the above 

strategies to gain extra granular insights. As an instance, you could 

examine the keywords in a group of tweets that have been categorized as 
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“negative” and stumble on which phrases or subjects are cited most 

customarily. 

people, groups, places, and many others. A customer service team would 

possibly locate this useful to automatically extract names of products, 

shipping numbers, emails, and some other applicable facts from customer 

service tickets. 

Mechanically classifying tickets the usage of semantic analysis 

equipment alleviates retailers from repetitive obligations and allows them 

to attention on duties that provide more cost at the same time as 

improving the complete purchaser experience. Tickets can be instantly 

routed to the right palms, and pressing issues may be without problems 

prioritized, shortening reaction times, and keeping delight stages 

excessive. Insights derived from information also help teams detect 

regions of improvement and make better choices. For example, you may 

determine to create a robust knowledge base by means of figuring out the 

maximum commonplace patron inquiries [24]. 

 

4.6 MODEL ALGORITHM 

Basically, two algorithms are used for purpose:  

 The 1st algorithm (HAC) identifies and extracts the potential features 

from the reviews of the product.  

 The 2nd algorithm takes these potential features as input, assigns 

scores to them and finally helps in classifying every review as 

positive, negative or neutral. The scores obtained for every feature of 

the product can be used to highlight the good features of the product. 
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4.6.1  THE HIGH ADJECTIVE COUNT ALGORITHM 

 Instead of using frequency of keywords, the algorithm starts 

identifying adjectives and nouns.  

 The scores of nouns are initialized to zero, each adjective is 

associated with a noun to  which it is closest, this adjective is more 

likely to describe the noun.  

 For each such adjective, score of noun is increased by one. After 

processing all the reviews, will have a score associated with each 

noun,  which will be then called as opinion scores.  

 So nouns with high score have more adjectives to describe them. 

Then will have a threshold and nouns having score more than 

threshold are considered as potential features.  

 

4.6.2  MAX OPINION SCORE ALGORITHM 

This algorithm  takes 3 arguments as input:  

 The first argument is the list of adjectives which are used to express 

opinions,we refer them as opinion words. Have to chose a value 

manually between [-4,4] to each opinion word. A high score indicates 

a stronger opinion than lower score.  

 The second argument is the list of inversion words like ‘not’ which 

give a negative sense to opinion,so when these words occur in the left 

context of opinion words,they change the opinion sense. So when a 

inversion word appears, then need to  multiply the score by -1.  

 The third argument is the list of potential features obtained by using 

TF / TF-IDF / HAC algorithm. 
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CHAPTER 5 

SYSTEM IMPLEMENTATION 

 

5.1 SYSTEM FLOW 

The product reviews are first get collected from online shopping sites 

and then the collected reviews are get saved in text file. The text files are 

the datasets. Then the collected datasets are pre-processed  and then used  

for further process. To make the system processing fast unwanted words 

are removed from the reviews contained in text file. Adjectives and 

features are filtered out  and scores are given for feature using algorithms. 

The datasets are nothing but text files which contain reviews. Basically, 

two algorithms are used for the purpose: The first algorithm (HAC) 

identifies and extracts the potential features from the reviews of the 

product. The second algorithm takes these potential features as input, 

assigns scores to them and finally helps in classifying every review as 

positive, negative or neutral. The scores obtained for every feature of the 

product can be used to highlight the good features of the product. The 

adjectives can be used to find whether the review is positive or negative 

and it is also used to give scores. Here the nouns are the features for 

which the score is given based on adjective count. The words which are 

associated with negations like not, no etc,. The inversion words can  be 

used to find whether the review is negative and also again it is an 

adjective too. So if more inversion words are related to noun or feature 

the scores will get reduce. 
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The figure 5.1 below shows a simple representation of the system 

architecture. 

 

   

                                                                               

                                                                               

                                                                                 

 

 

 

 

 

 

 

                                            Figure 5.1 system flow 

 

5.2 SETTING UP ENVIRONMENT 

        The required packages like Natural language toolkit, PyE    nchant, 

Textblob, Six and NLTK data are downloaded. Then the programs are 

invoked using command prompt. 

 

 

Datasets 

Machine learning 

algorithm 

Classifier and 

scoring 

Output 
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5.3 SYSTEM IMPLEMENTATION 

        In the proposed system there is three text files which acts as a 

datasets and two test datasets. The datasets are then given as a input and 

the programs that using it are 

Main.py -This is the which is responsible for pre-processing the data and 

produce output. It gives final output as text files which is 

positive, neutral, negative and feature score. 

Hac.py- Here the features are filtered out from reviews and unwanted 

other words are removed. It contain high adjective count 

algorithm which does this job and its main role is to produce 

adjective count. 

Mos.py- Here the reviews are the classified and scores for features are  

calculated. For this maximum opinion score algorithm is used. 

Adjscore.py- In this code the meaningless adjectives are removed from  

the reviews and the score is provided to remaining adjectives. 

withNgrams.py- In this phase the scores for the nouns are determined. 

Nouns are nothing but features of the product. 
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CHAPTER 6 

RESULT AND ANALYSIS 

 

6.1 TESTING THE MODULE 

        System testing presents an interesting anomaly for the software 

engineer. The engineer creates a series of test cases that are intended to 

“demolish” the software that has been built. Testing requires that the 

developer discards the preconceived notions of the “correctness” of 

software just developed and overcome a conflict of interest that occurs 

when errors are uncovered. 

 There are several rules that can serve well as testing objectives. 

Testing is a process of executing a program with the intent of finding an 

error. A good test case is one that has a high probability of finding an as-

yet undiscovered error. A successful test is one that uncovers an as-yet 

undiscovered error. 

 Initially the environment checking is done to see if all the 

necessary requirements are installed or not. 

Installation of  NLTK, PyEnchat, textblob and numpy are 

confirmed. The model is then tested. The model created after training is 

then fed with different text files. The results are obtained and the 

accuracy is checked. The model is able to identify reviews positivity, 

negativity and hence the model is tested successfully. 
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6.2 RESULT ANALYSIS 

 The system has been tested several times, improvising the result 

and accuracy at each test. The training accuracy tends to be 80% and the 

model results coped up with the accuracy. 

          The module classify the reviews into positive , negative and  

neutral and give feature score. 

Now using the reviews about canon camera will going to get the positive 

,negative and neutral and feature scores. 

Positive reviews: 

    By  recognizing the adjective is positive or negative the positive 

reviews are found out and get saved in a separate file 

The figure 6.1 below shows the positive review report filtered out from 

mixed  reviews. 

 

                                              Figure 6.1 positive review 
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Negative reviews: 

         When the module found inversion words in the review it recognize 

it as an negative review. Inversion words are the words which are 

associated with negations like not,no etc,. 

         It also find negative review by using adjectives which implies 

negative meaning. 

The  inversion words can be used to find whether the review is 

negative and also again it is an adjective too. So if more inversion words 

are related to noun or feature the scores will get reduce. 

 

The below figure 6.2  shows the negative review filtered out. 

 

                                      Figure 6.2 Negative review 
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Neutral reviews: 

     The neutral review is does not positive and at the same time it is not  

negative. 

     The figure 6.3 below shows the neutral review output. 

 

 

                                           Figure 6.3 Neutral review 
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Feature score: 

Finally the feature score plays the major role in giving short and clear  

idea about the product. The score ranges from maximum score 4 to  

minimum score - 4 

 

S.no Feature Score 

1 Life 3.600 

2 Feel  3.200 

3 Zoom 2.920 

4 Auto 2.600 

5 Canon 2.560 

6 View finder 2.200 

7 Month 2 

8 Resolution 1.920 

9 Quality 1.751 

10 Use 1.695 

11 Plenty 1.600 

12 Camera 1.530 

 

Table 6.2.4 Feature score positive 

 

In the above table 6.2.4   the features are getting positive scores and the 

feature life of the camera gets maximum score. 
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S.no Feature Score 

1 picture -0.375 

2 Lcd -0.300 

3 battery -0 

4 Dial -0.042 

5 mode -0.100 

6 Strap -0.200 

7 Card -0.267 

8 focus -0.267 

9 charge -0.286 

10 Bit -1.200 

11 Line -1.333 

12 hand -2.800 

13 Lot -3.200 

 

                              Table 6.2.5 feature score negative 

 In the above table 6.2.5  some features of camera are getting negative 

scores which implies these features are not good in that camera. 
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S.no Feature Score 

1 review 1.195 

2 Time 1.131 

3 priority 1.120 

4 screen 1.100 

5 button 1 

6 point 0.933 

7 software 0.871 

8 thing 0.850 

9 control 0.800 

10 flash 0.525 

11 picture 0.375 

12 Lcd 0.300 

13 battery 0 

 

Table 6.2.6 Feature score neutral 

 

In the above table 6.2.6 the features are getting neutral scores. 
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                                               Figure 6.4 Score chart  

 

   The above pie chart shows overall scores the camera got and percentage 

of scores. In this chart the percentage of positive score is higher than 

other type of scores. So the quality of camera is good and customer can 

bought this without any doubt. 
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CHAPTER 7 

CONCLUSION AND FUTURE ENHANCEMENT 

 

7.1 CONCLUSION 

       The system  is a state-of-the-art review analysis system that is much 

better than the evaluated review systems of some E-commerce giants. On 

the basis of different features being selected, will be able to determine the 

accurate performance and customer satisfaction of the product. This 

would help to establish a proper review system for genuine customers, 

who are worried about the product performance. Also, this would be 

making it possible for different E-commerce brands to establish them and 

the products they sell. This system would enable users to make a faster, 

more accurate, and by far a more desirable choice. It would also eliminate 

agenda driven campaigns, and would move the online shopping platform 

towards an honest and more trust-based direction. 

 

7.2 FUTURE ENHANCEMENT 

           In future, the work can be extended to perform multi-class 

classification of reviews which will provide delineated nature of review 

to the consumer, hence leads to better judgement of the product. It can 

also be used to predict rating of a product from the review. This will 

provide users with reliable rating because sometimes the rating received 

by the product and the sentiment of the review do not provide justice to 

each other. The proposed extension of work will be very beneficial for 

the e-commerce industry as it will augment user satisfaction and trust. 
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APPENDIX 

 

Main.py 

import os 

import sys 

import HAC 

import math 

import FileCreationWithBigrams 

import AdjScore 

import operator 

import collections 

from textblob import TextBlob 

from texttable import Texttable 

filename = sys.argv[1] 

print(filename) 

reviewTitle = [] 

reviewContent = [] 

posCount = 0 

negCount = 0 

neutCount = 0 

curIndex = -1 

posActIndex = [] 

negActIndex = [] 

neutActIndex = [] 

 

with open(filename) as f: 
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 review = [] 

 for line in f: 

  if line[:6] == "[+][t]":      

  

   if review: 

    reviewContent.append(review) 

    review = [] 

   reviewTitle.append(line.split("[+][t]")[1].rstrip("\r\n")) 

   posCount += 1 

   curIndex += 1 

   posActIndex.append(curIndex) 

  elif line[:6] == "[-][t]": 

   if review: 

    reviewContent.append(review) 

    review = [] 

   reviewTitle.append(line.split("[-][t]")[1].rstrip("\r\n")) 

   negCount += 1 

   curIndex += 1 

   negActIndex.append(curIndex) 

  elif line[:6] == "[N][t]": 

   if review: 

    reviewContent.append(review) 

    review = [] 

   reviewTitle.append(line.split("[N][t]")[1].rstrip("\r\n")) 

   neutCount += 1 

   curIndex += 1 

   neutActIndex.append(curIndex) 
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  else: 

   if "##" in line:      

   

    x = line.split("##") 

    for i in range(1, len(x)):    

     review.append(x[i].rstrip("\r\n")) 

   else: 

    continue 

 reviewContent.append(review) 

FileCreationWithBigrams.fileCreation(reviewContent,filename) 

import MOS 

import WithNgrams 

adjDict = HAC.findFeatures(reviewContent,filename) 

featureList = WithNgrams.getList() 

adjScores = AdjScore.getScore(adjDict,filename) 

posPredIndex, negPredIndex, neutPredIndex, avgFeatScore =  

MOS.rankFeatures(adjScores, featureList, reviewTitle,  

reviewContent)outputDir = "./Results_" + filename 

if not os.path.exists(outputDir): 

    os.makedirs(outputDir) 

with open(outputDir + "/positiveReviews.txt", "w") as filePos: 

 for i in posPredIndex: 

  for k in range(len(reviewContent[i])): 

   filePos.write(reviewContent[i][k]) 

  filePos.write("\n") 

with open(outputDir + "/negativeReviews.txt", "w") as fileNeg: 

 for i in negPredIndex: 
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  for k in range(len(reviewContent[i])): 

   fileNeg.write(reviewContent[i][k]) 

  fileNeg.write("\n") 

with open(outputDir + "/neutralReviews.txt", "w") as fileNeut: 

 for i in neutPredIndex: 

  for k in range(len(reviewContent[i])): 

   fileNeut.write(reviewContent[i][k]) 

  fileNeut.write("\n") 

with open(outputDir + "/featureScore.txt", "w") as fileFeat: 

 t = Texttable() 

 lst = [["Feature", "Score"]] 

 for tup in avgFeatScore: 

  lst.append([tup[0], tup[1]]) 

 t.add_rows(lst) 

 fileFeat.write(str(t.draw())) 

print("The files are successfully created in the dir '" + outputDir + "'") 

 

Adjscore.py 

from textblob import TextBlob 

import operator 

from collections import OrderedDict 

#Return the adjective scores for adjectives in adjList 

def getScore(adjList,filename): 

inversion_words = [] 

 adjScores = dict() 

for i in adjList: 

  blob = TextBlob(i) 
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  if(blob.sentiment.polarity != 0): 

   #If the adjective expresses some polarity 

   adjScores[i] = blob.sentiment.polarity 

 

 #Multiply the polarity by 4 to get in the given range 

 adjScores.update((x, 4 * y) for x, y in adjScores.items()) 

 if filename == "CanonG3.txt" or filename == "Nikon.txt": 

   

  adjScores  = OrderedDict([('awesome', 4.0), ('excellent', 4.0), 

('wonderful', 4.0), ('ideal', 3.6), ('incredible', 3.6),  

    ('beautiful', 3.4), ('great', 3.2), ('happy', 3.2), ('bright', 

2.8000000000000003), ('nice', 2.4),  

    ('love', 2.0), ('creative', 2.0), ('able', 2.0), ('satisfied', 

2.0), ('pleased', 2.0), ('sophisticated', 2.0),  

    ('easy', 1.7333333333333334), ('fantastic', 1.6), 

('advanced', 1.6), ('fabulous', 1.6), ('light', 1.6), 

    ('comfortable', 1.6), ('available', 1.6), ('clean', 

1.4666666666666668), ('quick', 1.3333333333333333), 

    ('super', 1.3333333333333333), ('worth', 1.2), 

('powerful', 1.2), ('first', 1.0), ('positive', 0.9090909090909091),  

    ('ready', 0.8), ('real', 0.8), ('reasonable', 0.8), ('fast', 

0.8), ('much', 0.8), ('main', 0.6666666666666666),  

    ('high', 0.64), ('live', 0.5454545454545454), ('clear', 

0.4000000000000001), ('flat', -0.1), ('minor', -0.2),  

    ('single', -0.2857142857142857), ('remote', -0.4), 

('partially', -0.4), ('extreme', -0.5), ('sharp', -0.5),  

    ('average', -0.6), ('heavy', -0.8),('flaw', -0.8), ('harsh', -

0.8), ('raw', -0.9230769230769231), ('small', -1.0),  

    ('hard', -1.1666666666666667), ('slow', -

1.2000000000000002), ('serious', -1.3333333333333333),  

    ('disappointing', -2.4), ('bad', -2.7999999999999994)]) 
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 adjScores = sorted(adjScores.items(), key=operator.itemgetter(1), 

reverse=True) 

 

 #Print the adjectives and their scores 

 return(OrderedDict(adjScores)) 

 

HAC.py 

import re 

import nltk 

import string 

import enchant 

import operator 

from nltk.corpus import stopwords 

from collections import OrderedDict  

from textblob import TextBlob, Word 

from nltk.corpus import brown 

from textblob import Blobber 

from textblob.taggers import NLTKTagger 

 

#Dict to convert the raw user text to meaningful words for analysis 

apostropheList = {"n't" : "not","aren't" : "are not","can't" : 

"cannot","couldn't" : "could not","didn't" : "did not","doesn't" : "does not", 

\"don't" : "do not","hadn't" : "had not","hasn't" : "has not","haven't" : 

"have not","he'd" : "he had","he'll" : "he will", \"he's" : "he is","I'd" : "I 

had","I'll" : "I will","I'm" : "I am","I've" : "I have","isn't" : "is not","it's" : 

\"it is","let's" : "let us","mustn't" : "must not","shan't" : "shall 

not","she'd" : "she had","she'll" : "she will", \"she's" : "she is", 

"shouldn't" : "should not","that's" : "that is","there's" : "there is","they'd" : 

"they had", \"they'll" : "they will", "they're" : "they are","they've" : "they 
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have","we'd" : "we had","we're" : "we are","we've" : "we have", 

\"weren't" : "were not", "what'll" : "what will","what're" : "what 

are","what's" : "what is","what've" : "what have", \"where's" : "where 

is","who'd" : "who had", "who'll" : "who will","who're" : "who 

are","who's" : "who is","who've" : "who have", \ "won't" : "will 

not","wouldn't" : "would not", "you'd" : "you had","you'll" : "you 

will","you're" : "you are","you've" : "you have"} 

 

#Removing stop words might lead to better data analysis  

stopWords = stopwords.words("english") 

#Exclude punctuations from the reviews 

exclude = set(string.punctuation) 

exclude.remove("_") 

#Remove all the hyperlinks from the reviews 

linkPtrn = re.compile("^(https?:\/\/)?([\da-z\.-]+)\.([a-z\.]{2,6})([\/\w \.-

]*)*\/?$") 

#English vocabulary 

enchVocab = enchant.Dict("en_US") 

vocabList = set(w.lower() for w in nltk.corpus.words.words()) 

#Max hops to find the nearby noun from the position of adjective 

maxHops = 4 

#Find all the potential features from the reviews 

def findFeatures(reviewContent,filename): 

 #nounScores is the dict containing nouns from all reviews and their 

respective scores from HAC algorithm 

 nounScores = dict() 

#adjDict dict contains adjective and the corresponding noun which 

it is assigned to 

 adjDict = dict() 

 tb = Blobber(pos_tagger = NLTKTagger()) 
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 for a in range(len(reviewContent)):     

   #Stores the score of the nouns 

  for i in range(len(reviewContent[a])): 

   text = ' '.join([word for word in 

reviewContent[a][i].split() if word not in stopwords.words("english")]) 

   text = ''.join(ch for ch in text if ch not in exclude) 

   text = nltk.word_tokenize(text) 

   x = nltk.pos_tag(text) 

#Get the noun/adjective words and store it in tagList 

   tagList = [] 

   for e in x: 

    if(e[1] == "NN" or e[1] == "JJ"): 

     tagList.append(e) 

    #Add the nouns(which are not in the nounScores dict) to the dict 

   for e in tagList: 

    if e[1] == "NN": 

     if e[0] not in nounScores: 

      nounScores[e[0]] = 0 

#For every adjective, find nearby noun 

   for l in range(len(tagList)): 

    if("JJ" in tagList[l][1]): 

     j = k = leftHop = rightHop = -1 

 #Find the closest noun to the right of the adjective in the line 

     for j in range(l + 1, len(tagList)): 

      if(j == l + maxHops): 

       break 
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      if("NN" in tagList[j][1]): 

       rightHop = (j - l) 

       Break 

#Find the closest noun to the left of the adjective in the line 

     for k in range(l - 1, -1, -1): 

#Incase hopped the 'maxHops' number of words and no noun was found, 

ignore the adjective 

      if(j == l - maxHops): 

       break 

      if("NN" in tagList[k][1]): 

       leftHop = (l - k) 

       break 

#Compare which noun is closer to adjective(left or right) and assign the 

adj to corresponding noun 

     if(leftHop > 0 and rightHop > 0): 

    #If nouns exist on both sides of adjective 

         if (leftHop - rightHop) >= 0:  

    #If left noun is farther 

      adjDict[tagList[l][0]] = tagList[j][0] 

      nounScores[tagList[j][0]] += 1 

         else:     

       #If right noun is farther 

      adjDict[tagList[l][0]]= tagList[k][0] 

      nounScores[tagList[k][0]] += 1 

     elif leftHop > 0:    

    #If noun is not found on RHS of adjective 

      adjDict[tagList[l][0]]= tagList[k][0] 

      nounScores[tagList[k][0]] += 1 
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     elif rightHop > 0:    

     #If noun is not found on LHS of adjective 

      adjDict[tagList[l][0]] = tagList[j][0] 

      nounScores[tagList[j][0]] += 1 

  

 nounScores=OrderedDict(sorted(nounScores.items(),key=operator.

itemgetter(1))) 

 return filterAdj(nounScores, adjDict,filename) 

def filterAdj(nounScores, adjDict,filename): 

 adjectList = list(adjDict.keys()) 

 nouns = [] 

 for key, value in nounScores.items(): 

  if value >= 3: 

   nouns.append(key) 

 nouns1 = ["sound quality","battery life","great phone","cell 

phone","menu option","color screen","flip phone","samsung 

phone","nokia phones","corporate email","ring tone","tmobile service"] 

nouns = set(nouns) 

stopWords = stopwords.words("english") 

 exclude = set(string.punctuation) 

 reviewTitle = [] 

 reviewContent = [] 

with open(filename) as f: 

  review = [] 

  for line in f: 

   if line[:6] == "[+][t]": 

    if review: 

     reviewContent.append(review) 
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     review = [] 

   

 reviewTitle.append(line.split("[+][t]")[1].rstrip("\r\n")) 

   elif line[:6] == "[-][t]": 

    if review: 

     reviewContent.append(review) 

     review = [] 

    reviewTitle.append(line.split("[-

][t]")[1].rstrip("\r\n")) 

   else: 

    if "##" in line: 

     x = line.split("##") 

     #if len(x[0]) != 0: 

     for i in range(1, len(x)): 

      review.append(x[i].rstrip("\r\n")) 

    else: 

     continue 

  reviewContent.append(review) 

 

 tb = Blobber(pos_tagger=NLTKTagger()) 

 nounScores = dict() 

 f = open('modified.txt', 'w') 

 for a in range(len(reviewContent)): 

  f.write("[t]"+reviewTitle[a]) 

  f.write("\r\n")  

  #Stores the score of the nouns 

  for i in range(len(reviewContent[a])): 
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   text = reviewContent[a][i] 

   x = tb(text).tags #Perceptron tagger 

   #Get the noun/adjective words and store it in tagList 

   tagList = [] 

   e = 0 

   f.write("##") 

                     while e<len(x): 

    tagList = [] 

    f.write(x[e][0]) 

    e = e+1 

    count = e 

    if(count<len(x) and x[count-1][1] == "NN" and 

x[count][1] == "NN"): 

        tagList.append(x[count-1][0]) 

     

      while(count < len(x) and x[count][1]== "NN"): 

      tagList.append(x[count][0]) 

      count = count+1 

    if tagList != [] and len(tagList) == 2: 

     if set(tagList) <= nouns:  

               for t in range(1,len(tagList)): 

       f.write(tagList[t]) 

      e = count 

    f.write(" ") 

   f.write(".\r\n") 

return adjectList  
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MOS.py 

import re 

import string 

import operator 

from collections import OrderedDict 

from textblob import TextBlob 

from nltk.corpus import stopwords 

import os 

 

 

#Dict to convert the raw user text to meaningful words for analysis 

apostropheList = {"n't" : "not","aren't" : "are not","can't" : 

"cannot","couldn't" : "could not","didn't" : "did not","doesn't" : "does 

not", \"don't" : "do not","hadn't" : "had not","hasn't" : "has not","haven't" : 

"have not","he'd" : "he had","he'll" : "he will", \ "he's" : "he is","I'd" : "I 

had","I'll" : "I will","I'm" : "I am","I've" : "I have","isn't" : "is not","it's" : 

\ "it is","let's" : "let us","mustn't" : "must not","shan't" : "shall 

not","she'd" : "she had","she'll" : "she will", \"she's" : "she is", "shouldn't" 

: "should not","that's" : "that is","there's" : "there is","they'd" : "they had", 

\ "they'll" : "they will", "they're" : "they are","they've" : "they 

have","we'd" : "we had","we're" : "we are","we've" : "we have", 

\"weren't" : "were not", "what'll" : "what will","what're" : "what 

are","what's" : "what is","what've" : "what have", \ "where's" : "where 
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is","who'd" : "who had", "who'll" : "who will","who're" : "who 

are","who's" : "who is","who've" : "who have", \"won't" : "will 

not","wouldn't" : "would not", "you'd" : "you had","you'll" : "you 

will","you're" : "you are","you've" : "you have"} 

#Removing stop words might lead to better data analysis 

stopWords = stopwords.words("english") 

#Exclude punctuations from the reviews 

exclude = set(string.punctuation) 

#The two lists which holds the review title and the corresponding reviews 

reviewTitle = [] 

reviewContent = [] 

alpha = 0.6 

with open("modified.txt") as f: 

 review = [] 

 for line in f: 

  if line[:3] == "[t]": 

   if review: 

    reviewContent.append(review) 

    review = [] 

   reviewTitle.append(line.split("[t]")[1].rstrip("\r\n")) 

  else:  
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   if "##" in line: 

    x = line.split("##") 

    for i in range(1, len(x)): 

     review.append(x[i].rstrip("\r\n")) 

   else: 

    continue 

 reviewContent.append(review) 

def rankFeatures(adj_scores, features, reviewTitle, reviewContent): 

#Lists containing indices of the reviewContent list 

 pos_review_index = dict() 

 neg_review_index = dict() 

 neut_review_index = dict() 

 #scores for a feature from all the reviews 

 global_noun_scores = dict() 

#Number of adj describing a feature obtained from all the reviews 

 global_noun_adj_count = dict() 

#Iterate for each review in the list of reviews 

 for a in range(len(reviewContent)): 

#scores for a feature from the review 

  review_noun_scores = dict() 
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  title_noun_scores = dict() 

#Number of adj describing a feature in the review 

  review_noun_adj_count = dict() 

  title_noun_adj_count = dict() 

#Iterate for all lines in a review 

  for lineIndex in range(len(reviewContent[a]) + 1): 

   if(lineIndex == len(reviewContent[a])): 

    line_words = reviewTitle[a] 

   else: 

    line_words = reviewContent[a][lineIndex] 

line_words = ' '.join([apostropheList[word] if word in 

apostropheList else word for word in line_words.split()]) 

   line_words = ''.join(ch for ch in line_words if ch not in 

exclude) 

   line_words = re.sub(r' [a-z][$]? ', ' ', line_words) 

   line_words = [word for word in line_words.split() 

if(word not in stopwords.words("english") and not word.isdigit()) and 

len(word) > 2] 

#Iterate for each word in the line 

   for wordIndex in range(len(line_words)): 

    word = line_words[wordIndex] 
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#If the word is an adj, get the adj score and check for inversion words 

onto its left 

    if word in adj_scores: 

     score = adj_scores[word] 

#Left context for inversion words 

     if(wordIndex - 2 >= 0): 

#Phrase is the last two words and the present adj 

      phrase = line_words[wordIndex - 

2] + " " + line_words[wordIndex - 1] + " " + line_words[wordIndex] 

#If the polarity of the phrase and the adj is opposite 

 if((TextBlob(phrase).sentiment.polarity * score) < 0): 

       score *= -1 

     elif(wordIndex - 1 >= 0): 

 

    #Phrase is the last word and the present adj 

      phrase = line_words[wordIndex - 

1] + " " + line_words[wordIndex] 

#If the polarity of the phrase and the adj is opposite 

     if((TextBlob(phrase).sentiment.polarity * 

score) < 0): 

       score *= -1 
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     #Find the closest feature to the adj 

     closest_noun = 

find_closest_noun(wordIndex, line_words, features) 

     if(closest_noun is None): 

      Continue 

if(lineIndex == len(reviewContent[a])): 

      if(closest_noun in 

title_noun_scores): 

title_noun_scores[closest_noun] += score 

      else: 

 title_noun_scores[closest_noun] = score 

#Increase the count of no of adjs describing the feature 

      if(closest_noun in 

title_noun_adj_count): 

      

 title_noun_adj_count[closest_noun] += 1 

      else: 

 title_noun_adj_count[closest_noun] = 1 

else: 

#Update the score of the feature which the adj is describing 

      if(closest_noun in 

review_noun_scores): 
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 review_noun_scores[closest_noun] += score 

      else: 

 review_noun_scores[closest_noun] = score 

if(closest_noun in 

global_noun_scores): 

      

 global_noun_scores[closest_noun] += score 

      else: 

global_noun_scores[closest_noun] = score 

#Increase the count of no of adjs describing the feature 

      if(closest_noun in 

review_noun_adj_count): 

 review_noun_adj_count[closest_noun] += 1 

      else: 

 review_noun_adj_count[closest_noun] = 1 

if(closest_noun in 

global_noun_adj_count):      

 global_noun_adj_count[closest_noun] += 1 

      else: 

global_noun_adj_count[closest_noun] = 1 
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  #Score for the review content 

  total_score = sum(review_noun_scores.values()) 

  total_adj = sum(review_noun_adj_count.values()) 

if(total_adj == 0): 

   review_score = 0 

  else: 

   review_score = total_score / float(total_adj) 

#Find the title score 

  title_total_score = sum(title_noun_scores.values()) 

  title_total_adj = sum(title_noun_adj_count.values()) 

if(title_total_adj == 0): 

   title_score = 0 

  else: 

   title_score = title_total_score / float(title_total_adj) 

#The total score for the review 

  avg_score = ((alpha * title_score) + review_score) / (alpha + 

1) 

 

#Incase both title_score and review_scores are 0's, then ignore that 

review 

  if(avg_score == 0): 
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   neut_review_index[a] = avg_score 

   continue 

if(avg_score > 0): 

   pos_review_index[a] = avg_score 

  else: 

   neg_review_index[a] = avg_score 

#Scores for each feature from all the reviews 

 avg_feature_score = dict() 

 for noun in global_noun_scores: 

  avg_feature_score[noun] = global_noun_scores[noun] / 

float(global_noun_adj_count[noun]) 

 avg_feature_score = sorted(avg_feature_score.items(), 

key=operator.itemgetter(1), reverse=True) 

pos_review_index = OrderedDict(sorted(pos_review_index.items(), 

key=operator.itemgetter(1), reverse=True)) 

 neg_review_index = 

OrderedDict(sorted(neg_review_index.items(), 

key=operator.itemgetter(1))) 

posPredIndex = [] 

 negPredIndex = [] 

 neutPredIndex = [] 

#Gather the review index only (not score) from dict 
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 for i, j in pos_review_index.items(): 

  posPredIndex.append(i) 

for i, j in neg_review_index.items(): 

  negPredIndex.append(i) 

for i, j in neut_review_index.items(): 

  neutPredIndex.append(i) 

#Remove the temp file 

 os.remove("modified.txt") 

 return posPredIndex, negPredIndex, neutPredIndex, 

avg_feature_score 

#Find the closest feature for an adj. Assumes a noun is found within 3 

steps from the adj. 

def find_closest_noun(wordIndex, line_words, features): 

 ptr = 1 

 while(ptr <= 3): 

  if(wordIndex + ptr < len(line_words) and 

line_words[wordIndex + ptr] in features): 

   return line_words[wordIndex + ptr] 

  elif(wordIndex - ptr >= 0 and line_words[wordIndex - ptr] in 

features): 

   return line_words[wordIndex - ptr] 

  else: 
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   ptr += 1 

WithNgrams.py 

import nltk 

from nltk.corpus import stopwords 

import string 

import operator 

from collections import OrderedDict  

#from textblob import TextBlob 

from textblob import Blobber 

from textblob.taggers import PatternTagger, NLTKTagger 

stopWords = stopwords.words("english") 

exclude = set(string.punctuation) 

reviewTitle = [] 

reviewContent = [] 

def getList(): 

 #reading from the created file "modified.txt" 

 with open("modified.txt") as f: 

  review = [] 

  for line in f: 

   if line[:3] == "[t]": 



 57

    if review: 

     reviewContent.append(review) 

     review = [] 

reviewTitle.append(line.split("[t]")[1].rstrip("\r\n")) 

   else: 

    if "##" in line: 

     x = line.split("##") 

     for i in range(1, len(x)): 

      review.append(x[i].rstrip("\r\n")) 

    else: 

     continue 

  reviewContent.append(review) 

tb = Blobber(pos_tagger=NLTKTagger()) 

 nounScores = dict() 

 for a in range(len(reviewContent)):     

   #Stores the score of the nouns 

  for i in range(len(reviewContent[a])): 

   #text = reviewContent[a][i] 

   text = ' '.join([word for word in 

reviewContent[a][i].split() if word not in stopwords.words("english")]) 

   text = ''.join(ch for ch in text if ch not in exclude) 
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   text = nltk.word_tokenize(text) 

   x = nltk.pos_tag(text) 

   #x = TextBlob(text).tags #textblob tagger 

   #x = tb(text).tags #Perceptron tagger  

   #Get the noun/adjective words and store it in tagList 

   tagList = [] 

   for e in x: 

    if(e[1] == "NN" or e[1] == "JJ"): 

     tagList.append(e) 

 #Add the nouns(which are not in the nounScores dict) to the dict 

   for e in tagList: 

    if e[1] == "NN": 

     if e[0] not in nounScores: 

      nounScores[e[0]] = 0 

#For every adjective, find nearby noun 

   l=0 

   for l in range(len(tagList)): 

    if(tagList[l][1] == "JJ"): 

     check=0 

     j = 0 
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     k = 0 

     ct1 = 0 

     for j in range(l + 1, len(tagList)): 

      if ct1 == 4: 

       break 

      if(tagList[j][1] == "NN"): 

      #nounScores[tagList[j][0]] += 1 

       check = 1 

       break 

     ct = 0   

     if(l > 0): 

      if j == 0: 

       j = len(tagList) 

      for k in range(l - 1, 0, -1): 

       if ct == 4: 

        break 

       ct += 1 

       if(tagList[k][1] == "NN"): 

        if(j != len(tagList)): 

        

 nounScores[tagList[min(j, k)][0]] += 1 
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        else: 

        

 nounScores[tagList[k][0]] += 1  

        break 

     elif check == 1: 

      nounScores[tagList[j][0]] += 1 

 nounScores = OrderedDict(sorted(nounScores.items(), 

key=operator.itemgetter(1))) 

 nouns = [] 

 for key, value in nounScores.items(): 

  if value >= 3: 

   nouns.append(key) 

 return nouns 

def intersect(a, b): 

    return list(set(a) & set(b)) 
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