
 i

Product Feature Ranking and Review Classification

A PROJECT REPORT

Submitted by

HARI KRISHNAN K (715517104030)

DINESH KUMAAR K (715517104302)

in partial fulfillment for the award of the degree of

BACHELOR OF ENGINEERING

in

COMPUTER SCIENCE AND ENGINEERING

PSG INSTITUTE OF TECHNOLOGY AND APPLIED

RESEARCH, COIMBATORE 641 062

ANNA UNIVERSITY: CHENNAI - 600 025

JUNE 2021

 ii

ANNA UNIVERSITY: CHENNAI - 600 025

BONAFIDE CERTIFICATE

Certified that this project report “PRODUCT FEATURE RANKING

AND REVIEW CLASSIFICATION” is the bonafide work of “HARI

KRISHNAN K (715515104030), DINESH KUMAAR K

(715515104302)” who carried out the project work under my supervision.

SIGNATURE SIGNATURE

Dr. R. Manimegalai Ms. K Lakshmi Kalpana Roy

HEAD OF THE DEPARTMENT SUPERVISOR

Computer Science and Engineering Assistant Professor (Sr. Gr.)

PSG Institute of Technology and Computer Science and

Applied Research, Engineering

Coimbatore – 641 062 PSG Institute of

Technology and Applied

Research,

 Coimbatore – 641 062

Submitted for the project viva-voce Examination held on__________

----------------------------------- -----------------------------------

INTERNAL EXAMINER EXTERNAL EXAMINER

 iii

ACKNOWLEDGEMENTS

We are very thankful to Shri L Gopalakrishnan, Management

Trustee, PSG & Sons’ Charities for providing me with sufficient

resources for completing out project.

We are very grateful to Dr G Chandramohan, Principal and

Professor for providing me with an environment to complete our project

successfully.

We are greatly indebted to Dr P V Mohanram, Secretary and

Professor for his constant encouragement and motivation.

We express my sincere thanks to Dr R Manimegalai, Head of the

Department and Professor for her instrumental guidance and support

throughout the project.

We sincerely thank my Project Guide Ms. K Lakshmi Kalpana

Roy, Assistant Professor (Senior Grade) for her consistent support

throughout the course.

We earnestly thank my Project Coordinator Mr. S Thivaharan,

Assistant Professor (Selection Grade) for his guidance throughout the

project.

Finally, we take this opportunity to extend my deepest appreciation

to our family and friends, who supported us during the crucial times of

our project.

HARI KRISHNAN K

 DINESH KUMAAR K

 iv

VERIGUIDE ANALYSIS REPORT

 v

ABSTRACT

The e-commerce web sites are designed in a way for their

customers or clients to share their reviews and comments on the products

through ratings. The ratings provide a sign about the where the products

stand in the market while at the same time provide an opinion about the

products when customers view the website for purchasing a product.

Since the evolution of social networks, people have started to express

their opinions in the form of the blogs or facebook posts or tweets starting

from the products people buy to the presidential candidate they support.

When searched for a particular product on the web, the current day search

engines show the list of websites which gives the features of the product

and their prices. But, the users can be given much more info about the

product using the reviews about the searched product. Thus, a new type

of module can be designed which will not only retrieve facts, but will also

enable the retrieval of opinions of the users about the product. We create

a module which, when searched for a product, gives the highlighted

features of the product and score and some of the helpful reviews (instead

of the user scrolling through all the reviews to know about the product).

This project proposes a system that provides the users an authentication

of any product they wish, based on the online reviews and comments

posted by the customers who have already had an experience of it. It aims

to provide summarized positive and negative features about products and

services by analyzing their online reviews platform is available. Neutral

and veracious reviews help online users in making a right decision for

themselves and obtaining the right product suited for them. Reviews act

as a trust-building mechanism and creates a good relationship between

the involved entities.

 vi

TABLE OF CONTENTS

CHAPTER

NO.

TITLE PAGE

NO

 ABSTRACT v

 LIST OF FIGURES ix

 LIST OF TABLES x

 LIST OF ABBREVIATIONS xi

1 INTRODUCTION

 1.1 E-COMMERCE 1

 1.2 OBJECTIVE 3

 1.3 PROBLEM STATEMENT 3

 1.4 PROJECT OVERVIEW 3

 1.5 SEMANTIC ANALYSIS 4

 1.6 NATURAL LANGUAGE PROCESSING 5

 1.7 NATURAL LANGUAGE IN

 OPINION MINING

7

2 LITERATURE SURVEY

 2.1 EXISTING SYSTEMS 9

 2.2 DRAWBACKS IN THE EXISTING SYSTEM 11

3 SYSTEM DESCRIPTION

 vii

 3.1 NATURAL LANGUAGE TOOLKIT 12

 3.2 NUMPY 12

 3.3 PYENCHANT 13

 3.4 SIX 13

 3.5 TEXT BLOB 14

 3.6 TEXT TABLE 14

 3.7 NLTK DATA 14

4 SYSTEM DESIGN

 4.1 PROPOSED SYSTEM 15

 4.2 COLLECTION OF DATA 15

 4.2.1 ATTRIBUTES REQUIRED FOR

PROCESSING

 4.3 MODEL DEVELOPMENT 16

 4.4 NATURAL

LANGUAGE PROCESSING USED

16

 4.5 SEMANTIC ANALYSIS 17

 4.5.1 WORKING OF SEMANTIC ANALYSIS

18

 4.5.2 SEMANTIC ANALYSIS TECHNIQUES 19

 4.6 MODEL ALGORITHM 20

 4.6.1 THE HIGH ADJECTIVE COUNT

ALGORITHM

21

 4.6.2 MAX OPINION SCORE ALGORITHM 21

5 SYSTEM IMPLEMENTATION

 viii

 5.1 SYSTEM FLOW 22

 5.2 SETTING UP ENVIRONMENT 23

 5.3 SYSTEM IMPLEMENTATION 24

6 RESULT AND ANALYSIS

 6.1 TESTING THE MODULE 25

 6.2 RESULT ANALYSIS 26

7 CONCLUSION AND FUTURE

 ENHANCEMENT

 7.1 CONCLUSION 33

 7.2 FUTURE ENHANCEMENT 33

 APPENDIX

 REFERENCES

 ix

LIST OF FIGURES

FIGURE NO TITLE PAGE NO

1.1 E-com websites 1

1.2 NLP 5

5.1 System flow 23

6.1 Positive review 26

6.2 Negative review 27

6.3 Neutral review 28

6.4 Score chart 32

 x

LIST OF TABLES

TABLE NO TITLE PAGE NO

6.2.4 Feature score positive 29

6.2.5 Feature score negative 30

6.2.6 Feature score neutral 31

 xi

LIST OF ABBREVIATIONS

ABBREVIATION EXPANSION

AI ARTIFICIAL INTELLIGENCE

ML MACHINE LEARNING

NLP NATURAL LANGUAGE PROCESSING

NLTK NATURAL LANGUAGE PROCESSING

TOOLKIT

SVM SUPPORT VECTOR MACHINE

HAC HIGH ADJECTIVE SCORE

MOS MAXIMUM OPINION SCORE

 1

CHAPTER 1

INTRODUCTION

1.1 E-COMMERCE

Electronic commerce or e-commerce (sometimes written as

eCommerce) is a business model that lets firms and individuals buy and

sell things over the internet.E-commerce, which can be conducted over

computers, tablets, or smartphones may be thought of like a digital

version of mail-order catalog shopping. Nearly every imaginable product

and service is available through e-commerce transactions, including

books, music, plane tickets, and financial services such as stock

investing and online banking. As such, it is considered a very disruptive

technology.Major E-commerce websites used in India shown below in

figure 1.1.1

 Figure 1.1: E-com websites

 The Indian e-commerce scene has a nice mix between pure e-commerce

players and brick, and mortar retailers turned e-commerce giants. While

the Indian e-commerce sector is still in early development stages, it is a

https://www.investopedia.com/terms/b/businessmodel.asp
https://www.investopedia.com/articles/etfs-mutual-funds/080516/4-etfs-fang-stocks-fdnpnqiqqqskyy.asp
https://www.investopedia.com/articles/etfs-mutual-funds/080516/4-etfs-fang-stocks-fdnpnqiqqqskyy.asp
https://www.investopedia.com/terms/d/disruptive-technology.asp
https://www.investopedia.com/terms/d/disruptive-technology.asp

 2

market rich with opportunity; with so many people comes so much room

for major players and small players alike to take a giant chunk out of the

Indian e-commerce pie.

Top 10 Ecommerce Sites in India 2020

 Amazon India

 Flipkart

 Alibaba

 Snapdeal

 Myntra

 IndiaMART

 Book My Show

 Nykaa

 Firstcry

 1mg

American e-commerce giant, Amazon, is said to have an audience reach

of 89 percent in India, according to Statista. Since launching in India in

2010, the site now generates an estimated 322.54 million monthly visitors,

making it the highest performing site in the country, by a long shot. True

to the overall statistics that the primary e-commerce category in India is

electronics.When searched for a particular product on the web, the current

day search engines show the list of websites which gives the features of

the product and their prices.So we create a module which, when searched

for a product, gives the highlighted features of the product and score and

some of the helpful reviews [19].

https://www.statista.com/topics/2454/e-commerce-in-india/
https://www.statista.com/topics/2454/e-commerce-in-india/

 3

1.2 OBJECTIVE

 The main objective of the project is to provide the customer the

easier understanding about the product. The user who want to buy a

product did not need to study the whole review to know about the

product. By classifying product reviews into positive, negative and

neutral the customer can read reviews according to his choice. By giving

score to features for the product the customer can easily get a clear idea

about the product.

1.3 PROBLEM STATEMENT

 The features of the product is the important thing which make

customers buy it. Each product has its own advantage and disadvantages.

Also most of the products contains same features. But what make

difference is build quality or quality of service. By which the product

becomes brand. By giving feature score based on customer review one

who wants to buy product can easily know about and he may get a clear

conclusion that it will satisfy his requirements or not.

1.4 PROJECT OVERVIEW

 The product reviews are first get collected from online shopping

sites and then the collected reviews are get saved in text file. The text

files are the datasets. Then the collected datasets are pre-processed and

then used for further process.

Basically, two algorithms are used for the purpose:

 The 1st algorithm (HAC) identifies and extracts the potential features

from the reviews of the product.

 4

The 2nd algorithm takes these potential features as input, assigns scores to

them and finally helps in classifying every review as positive, negative or

neutral. The scores obtained for every feature of the product can be used

to highlight the good features of the product.

1.5 SEMANTIC ANALYSIS

Sentimental analysis is the sector of comprehending feelings and

expression of humans which they express within the form of critiques,

feedback, and guidelines. In this point in time, humans have the liberty to

express themselves on numerous structures, that allow them to hook up

with a tremendous majority of the network. those may be shared via

various strategies, like discussion boards, YouTube channels, evaluations

blogs, and social media posts. These facts may be shared by using every

person, which does not necessarily, ought to be professionals of the

sphere. The evaluation of this facts in a condensed manner can be

classified into positive, bad or neutral in nature. And it may additionally

be categorised primarily based on various variables. Such freedom to

express, may additionally lead to fake statistics being shared around.

This facilitates in producing false hype and endorsement of a private

product schedule driven critiques end up a not unusual problem when any

such platform is to be had. From producers to shops, absolutely everyone

would possibly try to perplex potential clients in buying their product

impartial and veracious evaluations assist online users in creating a right

choice for themselves and acquiring the right product ideal for them. A

correct analysis allows every party involved on this precise on the spot.

The opinions act as a consider-building mechanism and creates a good

courting between the involved entities. In gadget gaining knowledge of,

 5

category is used to classify a new statement into a specific set/class based

totally on a training set of information containing observations whose

class is thought earlier.

The maximum commonplace example is “junk mail” or “non-junk

mail” training for emails. In E-trade, classifier algorithms can be used to

classify sentiments of evaluation primarily based on phrases. The

particular phrases within the language are categorised earlier for their

high-quality or poor sentiments. Mastering training set has efficaciously

recognized observations. Classifier algorithms are used to create

cluster/units from the uncategorized unsupervised records primarily based

on similarity and/or distance from the schooling facts set.

1.6 NATURAL LANGUAGE PROCESSING

 Figure 1.2: NLP

 6

Natural language processing (NLP) is the intersection of computer

technology, linguistics natural language and NLP is all approximately

making computer systems apprehend and generate human language

programs of NLP strategies include voice assistants like Amazon's Alexa

and Apple's Siri, but additionally such things as machine translation and

textual content filtering. NLP has closely benefited from current advances

in machine learning, specially from deep learning techniques. The sphere

is split into the three components: Speech popularity , the translation of

spoken language into text. Natural Language technology. The era of

natural language with the aid of a computer scientific improvements in

NLP can be divided into three classes (Rule-based systems, Classical

machine learning models and Deep learning models).

Rule-based systems totally rely closely on crafting area-particular

regulations (e.g., everyday expressions), can be used to solve easy

problems inclusive of extracting dependent records (e.g., emails) from

unstructured information (e.g., web-pages), but due to the complexity of

natural human languages, rule-based totally structures fail to build models

that can purpose about language.

Classical machine learning strategies may be used to solve extra hard

troubles which rule-primarily based systems can’t solve very well (e.g.,

spam Detection), it relies on an extra well known approach to

understanding language, the usage of hand crafted capabilities (e.g.,

sentence length, part of speech tags, the incidence of precise words) then

supplying the ones functions to a statistical device mastering version

(e.g., Naive Bayes), which learns exceptional patterns in the schooling set

after which be able to purpose approximately unseen records (inference).

 7

Deep learning models are the hottest a part of NLP research and

applications now. They generalize even better than the classical machine

knowledge of processes as they don’t want hand crafted functions

because they routinely works as feature extractors, which helped lots in

building end to quit fashions (little human-interplay) aside from the

feature engineering part, deep learning algorithms getting to know

abilities are more effective than the shallow/classical ML ones, which

paved its manner to attaining the highest scores on different hard NLP

tasks (e.g., Machine Translation)[21].

1.7 NATURAL LANGUAGE PROCESSING IN OPINION MINING

One of the forms of natural language processing is opinion mining

which offers with tracking the mood of the humans concerning a specific

product or topic. This software program presents computerized extraction

of critiques, emotions and sentiments in text and additionally tracks

attitudes and emotions on the internet. People express their views by

means of writing blog posts, feedback, critiques and tweets

about all types of unique subjects. tracking merchandise and types and

then figuring out whether or not they're regarded positively or

negatively may be performed using web.

The opinion mining has slightly exceptional tasks and plenty

of names, e.g. sentiment evaluation, opinion extraction, sentiment mining,

subjectivity evaluation, affect evaluation, emotion evaluation, evaluate

mining and many others. But, all of them come under the umbrella of

sentiment evaluation or opinion mining. Sentiment category,

feature based totally sentiment category and opinion summarization are

few major fields of research predominate in sentiment analysis.

 8

In recent years, the system got witnessed that supporting postings in

social media have helped reshape groups, and sway public sentiments

and feelings, that have profoundly impacted on our social structures. It

has hence emerged as a necessity to gather and observe evaluation at the

web. Of route, opinionated files no longer only exist at the net (referred to

as external facts), many corporations additionally have internal

information, e.g., consumer comments collected from emails and phone

centres or consequences from surveys conducted by using the

corporations. Opinion mining may be useful in several ways. For example,

in marketing, it tracks and judges the fulfillment price of an advert

marketing campaign or launch of new product,

decide popularity of products and services with its versions additionally

inform us approximately demographics which like or

dislike unique features[22].

 9

CHAPTER 2

LITERATURE SURVEY

2.1 EXISTING SYSTEMS

The number of papers dealing with literature is growing exponentially.

Several researchers have played a significant role in the development of

useful opinion mining and product review classification algorithms.

K. L. S. Kumar, J. Desai and J. Majumdar[1] concentrated on

classifying online reviews that have been extracted from Amazon by

using different algorithms. These algorithms that include Naive Bayes

Classifier, Logistic Regression and SentiWordNet algorithm help in

determining the polarity of the online reviews.

Z. Singla, S. Randhawa and S. Jain [2] focused on emotional

sentiment analysis which not only will make it possible to classify the

reviews as positive or negative, but also to classify their based on the

emotion which can be of anger, fear, happiness, disappointment, etc.

P. P. Surya and B. Subbulakshmi [3] have used Naïve Bayes

Classifier for the polarity classification and analysis using R tool

which is a data mining tool. The outcome of the process is presented

in the form of a confusion matrix.

 10

Abinash Tripathya, Ankit Agrawalb[4],Support Vector Machine

(SVM) technique has been used by the authors for extracting the

polarity of a review. Analysis of frequency, precision and recall has

been done by the authors for the proposed algorithm. The Support

Vector Machine (SVM) technique outperforms in every case.

M. S. Neethu and R. Rajasree[5],When extracting online reviews,

one of the major concerns is of handling slang words or misspelled

words. Regarding this problem, developed a feature extraction

procedure which involved vectorization and preprocessing of the text.

Product reviews can be used to extract whether specific features of the

product are good or bad according to the customer.

 A. Agarwal, V. Sharma[6] carried out an opinion miner which was

feature based. The main work of the miner is to find the significant

features of the product by investigating the review and making the

assessment profile of every product which can be utilized by the user.

Y. Li, X. Feng and S. Zhang[7] have exhibited three kinds of new

features which incorporate review density, semantic and emotions.

The authors have provided the model and algorithm to build each

feature. They have concluded that the proposed model, calculation and

features are productive in fake review detection process. Regarding

fake review detection the authors justify that the utilization of ratings

alone to determine whether the review is phony or fake is insufficient,

as the data that can be extracted is restricted.

 11

2.2 DRAWBACKS IN THE EXISTING SYSTEM

 The systems involves complex processing methods.

 The size of the software is usually large and it isn’t compatible with

all the systems.

 The systems does not give score for features.

 A generalised approach is not seen in any of the above projects.

 12

CHAPTER 3

SYSTEM DESCRIPTION

The system’s algorithm is written in python and the project runs as

an application embedded with a frontend developed using HTML, CSS

and JS. The application runs in local IP and can also be deployed in an

instance of a cloud or a DNS to run at a particular IP address. The

software used in the system are described in the following sections.

3.1 NATURAL LANGUAGE TOOLKIT

NLTK is a main platform for constructing Python programs to

work with human language records. It affords easy-to-use interfaces to

over 50 corpora and lexical resources along with WordNet, along with a

suite of textual content processing libraries for type, tokenization,

stemming, tagging, parsing, and semantic reasoning, wrappers for

industrial strength NLP libraries, and an energetic dialogue discussion

board. NLTK has been referred to as “a outstanding tool for coaching,

and operating in, computational linguistics using Python,” and “an terrific

library to play with herbal language”. NLTK is suitable for linguists,

engineers, college students, educators, researchers, and industry

customers alike. NLTK is available for home windows, Mac OS X, and

Linux and it is a loose, open supply, community-driven assignment[23].

3.2 NUMPY

1. NumPy is the fundamental bundle for scientific computing in Python.

it is a Python library that gives a multidimensional array object,

diverse derived items (together with masked arrays and matrices), an

 13

collection of routines for instant operations on arrays which includes

mathematical, logical, shape manipulation, sorting, choosing, I/O,

discrete Fourier transforms, linear algebra, statistical operations,

random simulation and lots greater. On the core of the NumPy

package, is the ndarray object. This encapsulates n-dimensional arrays

of homogeneous information types, with many operations being done

in compiled code for performance.

3.3 PYENCHANT

 Pyenchant is a spellchecking library for Python, primarily based on

the splendid Enchant library. Pyenchant combines all of the capability of

the underlying Enchant library with the power of Python and a pleasant

“Pythonic” object-orientated interface. Pyenchant 3.2.0 Enchant is used

to check the spelling of words and endorse corrections for phrases which

are miss-spelled. it may use many famous spellchecking applications to

carry out this undertaking, which include ispell, aspell and MySpell.

3.4 SIX

 Six is a Python 2 and 3 compatibility library. It affords software

capabilities for smoothing over the differences between the Python

variations with the goal of writing Python code this is well matched on

each Python variations. Six provides easy utilities for wrapping over

differences among Python 2 and Python three. It's far meant to support

codebases that work on both Python 2 and 3 without modification. Six

consists of most effective one Python record, so it's miles painless to

replicate into a venture. The name, “six”, comes from the fact that

2*three equals 6. Multiplication is more effective, and, besides, “5” has

already been snatched away via the Zope 5 mission.

 14

3.5 TEXT BLOB

TextBlob is a Python (2 and 3) library for processing textual facts.

It presents a simple API for diving into not unusual natural language

processing (NLP) obligations which includes element-of-speech tagging,

noun word extraction, sentiment analysis, class, translation, and extra.

3.6 TEXT TABLE

 It is a python module, which allows us to print table on terminal. it's

miles one of the basic python modules for reading and writing textual

content tables in ASCII code. It pursuits to make the interface as similar

as feasible like csv module in Python.

3.7 NLTK DATA

 The NLTK records module includes features that may be used to load

NLTK aid files, inclusive of corpora, grammars, and saved processing

items. Other than man or woman facts applications, the complete series

(the usage of “all”), or just the facts required for the examples and

exercises within the e book (using “e-book”), or simply the corpora and

no grammars or skilled fashions (using “all-corpora”) can be downloaded.

 15

CHAPTER 4

SYSTEM DESIGN

4.1 PROPOSED SYSTEM

The system proposed to minimize the users time to understand

about the product and to give a easiest possible understanding about the

product and its features. Providing ranks and scores for products and its

features provides clear vision about product in short time and also don’t

need to study about lengthy reviews.

4.2 COLLECTION OF DATA

 The dataset for this project has been collected from various open-

source websites and shopping sites. The dataset is the pre-processed. to

make the system processing fast unwanted words are removed from the

reviews contained in text file. Adjectives and features are filtered out and

scores are given for feature using algorithms. The datasets are nothing but

text files which contain reviews.

4.2.1 ATTRIBUTES REQUIRED FOR PROCESSING

 Adjectives: The adjectives is used to find whether the review is

positive or negative and it is also used to give scores.

 Nouns: The nouns are the features for which the score is given based

on adjective count.

 16

 Inversion words: These are the words which are associated with

negations like not, no, etc.

 The inversion words is used to find that the review is negative and

also again it is an adjective too. So if more inversion words are related

to noun or feature the scores will get reduce.

 Scores: The score range from [-4 to 4] which are given to features

based on adjectives count.

4.3 MODEL DEVELOPMENT

The model is developed using Natural language processing. NLP is an

multi-disciplinary area of artificial intelligence. In this project linguistics

is handled because the data sets are reviews which is human language.

Natural language toolkit package is used to process the reviews. Natural

language toolkit data consists of packages like chunkers, corpora,

grammars, etc. By using algorithms potential features from reviews are

extracted and then reviews are classified as positive, negative and neutral

and then the scores for features are given using algorithms.

4.4 NATURAL LANGUAGE PROCESSING USED

 The NLP utilized in this project is semantic evaluation. Semantic

evaluation describes the method of know-how natural language–the

manner that people communicate–based on meaning and context. It

allows to study how a cognitive technology like expert plays semantic

analysis. The semantic evaluation of natural language content begins with

the aid of analyzing all of the phrases in content to capture the actual that

 17

means of any textual content. It identifies the text elements and assigns

them to their logical and grammatical function. It analyzes context in the

surrounding textual content and also the text shape to correctly

disambiguate the proper meaning of words which have a couple of

definition. Semantic era procedures the logical shape of sentences to

discover the maximum relevant factors in text and recognize the topic

discussed. It additionally is familiar with the relationships between

extraordinary concepts within the textual content. For example, it knows

that a textual content is about “politics” and “economics” despite the fact

that it doesn’t contain the real words but relate concepts consisting of

“election,” “Democrat,” “speaker of the house”, or “budget,” “tax” or

“inflation”. Because semantic analysis and natural language processing

can help machines robotically understand textual content, this supports

the even larger aim of translating facts–that potentially treasured piece of

patron remarks or insight in a tweet or in a customer service log–into the

area of commercial enterprise intelligence for customer support,

corporate intelligence or understanding management.

4.5 SEMANTIC ANALYSIS

 Semantic evaluation is the technique of drawing that means from text.

It allows computer systems to recognize and interpret sentences,

paragraphs, or complete files, by way of analyzing their grammatical

shape, and figuring out relationships between words in a particular

context. Its an important sub-project of natural Language Processing

(NLP) and the riding force at the back of machine learning tools like

chatbots, serps, and textual content analysis. Semantic analysis-driven

tools can assist groups robotically extract meaningful data from

unstructured records, which include emails, guide tickets, and patron

remarks[25].

 18

4.5.1 WORKING OF SEMANTIC ANALYSIS

Lexical semantics plays an important role in semantic evaluation,

permitting machines to understand relationships between lexical gadgets

(phrases, phrasal verbs, and so forth.):

Hyponyms: Precise lexical gadgets of a established lexical item

(hypernym) e.g. orange is a hyponym of fruit (hypernym).

Meronomy: A logical arrangement of text and words that denotes a

constituent part of or member of something e.g., a segment of an orange

Polysemy: A relationship among the meanings of phrases or terms,

although barely unique, percentage a not unusual middle meaning e.g. I

read a paper, and that i wrote a paper)

Synonyms: Words that have the equal feel or almost the same which

means as some other, e.g., glad, content, ecstatic, extremely joyful

Antonyms: Phrases that have near contrary meanings e.g., satisfied, sad

Homonyms:Two phrases that are sound the same and are spelled alike

but have a unique meaning e.g., orange (color), orange (fruit)

Semantic analysis also takes under consideration signs and emblems

(semiotics) and collocations (words that frequently cross together).

computerized semantic evaluation works with the help of machine

learning algorithms. By using feeding semantically greater device getting

to know algorithms with samples of text, you can teach machines to make

accurate predictions based on past observations.

 19

4.5.2 SEMANTIC ANALYSIS TECHNIQUES

Relying at the form of information you’d like to attain from

information, you may use one of two semantic evaluation techniques: a

text type model (which assigns predefined categories to textual content)

or a text extractor (which attracts out particular data from the text).

Semantic classification models

 Topic category: sorting text into predefined classes primarily based on

its content material. Customer service teams may additionally want to

categorise aid tickets as they drop into their help desk. Through semantic

evaluation, device learning equipment can understand if a ticket should

be categorized as a “payment trouble” or a “transport trouble.”

Sentiment analysis: detecting nice, terrible, or neutral feelings in a

textual content to indicate urgency. For instance, tagging Twitter

mentions through sentiment to get a feel of ways clients experience

approximately your brand, and being able to discover disgruntled

customers in actual time.

Intent classification: classifying text based on what customers want to

do next. This is used to tag income emails as “involved” and “no longer

involved” to proactively attain out to folks that can also need to attempt

your product.

Semantic Extraction models

Keyword extraction: locating relevant phrases and expressions in a

textual content. This approach is used alone or alongside one of the above

strategies to gain extra granular insights. As an instance, you could

examine the keywords in a group of tweets that have been categorized as

 20

“negative” and stumble on which phrases or subjects are cited most

customarily.

people, groups, places, and many others. A customer service team would

possibly locate this useful to automatically extract names of products,

shipping numbers, emails, and some other applicable facts from customer

service tickets.

Mechanically classifying tickets the usage of semantic analysis

equipment alleviates retailers from repetitive obligations and allows them

to attention on duties that provide more cost at the same time as

improving the complete purchaser experience. Tickets can be instantly

routed to the right palms, and pressing issues may be without problems

prioritized, shortening reaction times, and keeping delight stages

excessive. Insights derived from information also help teams detect

regions of improvement and make better choices. For example, you may

determine to create a robust knowledge base by means of figuring out the

maximum commonplace patron inquiries [24].

4.6 MODEL ALGORITHM

Basically, two algorithms are used for purpose:

 The 1st algorithm (HAC) identifies and extracts the potential features

from the reviews of the product.

 The 2nd algorithm takes these potential features as input, assigns

scores to them and finally helps in classifying every review as

positive, negative or neutral. The scores obtained for every feature of

the product can be used to highlight the good features of the product.

 21

4.6.1 THE HIGH ADJECTIVE COUNT ALGORITHM

 Instead of using frequency of keywords, the algorithm starts

identifying adjectives and nouns.

 The scores of nouns are initialized to zero, each adjective is

associated with a noun to which it is closest, this adjective is more

likely to describe the noun.

 For each such adjective, score of noun is increased by one. After

processing all the reviews, will have a score associated with each

noun, which will be then called as opinion scores.

 So nouns with high score have more adjectives to describe them.

Then will have a threshold and nouns having score more than

threshold are considered as potential features.

4.6.2 MAX OPINION SCORE ALGORITHM

This algorithm takes 3 arguments as input:

 The first argument is the list of adjectives which are used to express

opinions,we refer them as opinion words. Have to chose a value

manually between [-4,4] to each opinion word. A high score indicates

a stronger opinion than lower score.

 The second argument is the list of inversion words like ‘not’ which

give a negative sense to opinion,so when these words occur in the left

context of opinion words,they change the opinion sense. So when a

inversion word appears, then need to multiply the score by -1.

 The third argument is the list of potential features obtained by using

TF / TF-IDF / HAC algorithm.

 22

CHAPTER 5

SYSTEM IMPLEMENTATION

5.1 SYSTEM FLOW

The product reviews are first get collected from online shopping sites

and then the collected reviews are get saved in text file. The text files are

the datasets. Then the collected datasets are pre-processed and then used

for further process. To make the system processing fast unwanted words

are removed from the reviews contained in text file. Adjectives and

features are filtered out and scores are given for feature using algorithms.

The datasets are nothing but text files which contain reviews. Basically,

two algorithms are used for the purpose: The first algorithm (HAC)

identifies and extracts the potential features from the reviews of the

product. The second algorithm takes these potential features as input,

assigns scores to them and finally helps in classifying every review as

positive, negative or neutral. The scores obtained for every feature of the

product can be used to highlight the good features of the product. The

adjectives can be used to find whether the review is positive or negative

and it is also used to give scores. Here the nouns are the features for

which the score is given based on adjective count. The words which are

associated with negations like not, no etc,. The inversion words can be

used to find whether the review is negative and also again it is an

adjective too. So if more inversion words are related to noun or feature

the scores will get reduce.

 23

The figure 5.1 below shows a simple representation of the system

architecture.

 Figure 5.1 system flow

5.2 SETTING UP ENVIRONMENT

 The required packages like Natural language toolkit, PyE nchant,

Textblob, Six and NLTK data are downloaded. Then the programs are

invoked using command prompt.

Datasets

Machine learning

algorithm

Classifier and

scoring

Output

 24

5.3 SYSTEM IMPLEMENTATION

 In the proposed system there is three text files which acts as a

datasets and two test datasets. The datasets are then given as a input and

the programs that using it are

Main.py -This is the which is responsible for pre-processing the data and

produce output. It gives final output as text files which is

positive, neutral, negative and feature score.

Hac.py- Here the features are filtered out from reviews and unwanted

other words are removed. It contain high adjective count

algorithm which does this job and its main role is to produce

adjective count.

Mos.py- Here the reviews are the classified and scores for features are

calculated. For this maximum opinion score algorithm is used.

Adjscore.py- In this code the meaningless adjectives are removed from

the reviews and the score is provided to remaining adjectives.

withNgrams.py- In this phase the scores for the nouns are determined.

Nouns are nothing but features of the product.

 25

CHAPTER 6

RESULT AND ANALYSIS

6.1 TESTING THE MODULE

 System testing presents an interesting anomaly for the software

engineer. The engineer creates a series of test cases that are intended to

“demolish” the software that has been built. Testing requires that the

developer discards the preconceived notions of the “correctness” of

software just developed and overcome a conflict of interest that occurs

when errors are uncovered.

 There are several rules that can serve well as testing objectives.

Testing is a process of executing a program with the intent of finding an

error. A good test case is one that has a high probability of finding an as-

yet undiscovered error. A successful test is one that uncovers an as-yet

undiscovered error.

 Initially the environment checking is done to see if all the

necessary requirements are installed or not.

Installation of NLTK, PyEnchat, textblob and numpy are

confirmed. The model is then tested. The model created after training is

then fed with different text files. The results are obtained and the

accuracy is checked. The model is able to identify reviews positivity,

negativity and hence the model is tested successfully.

 26

6.2 RESULT ANALYSIS

 The system has been tested several times, improvising the result

and accuracy at each test. The training accuracy tends to be 80% and the

model results coped up with the accuracy.

 The module classify the reviews into positive , negative and

neutral and give feature score.

Now using the reviews about canon camera will going to get the positive

,negative and neutral and feature scores.

Positive reviews:

 By recognizing the adjective is positive or negative the positive

reviews are found out and get saved in a separate file

The figure 6.1 below shows the positive review report filtered out from

mixed reviews.

 Figure 6.1 positive review

 27

Negative reviews:

 When the module found inversion words in the review it recognize

it as an negative review. Inversion words are the words which are

associated with negations like not,no etc,.

 It also find negative review by using adjectives which implies

negative meaning.

The inversion words can be used to find whether the review is

negative and also again it is an adjective too. So if more inversion words

are related to noun or feature the scores will get reduce.

The below figure 6.2 shows the negative review filtered out.

 Figure 6.2 Negative review

 28

Neutral reviews:

 The neutral review is does not positive and at the same time it is not

negative.

 The figure 6.3 below shows the neutral review output.

 Figure 6.3 Neutral review

 29

Feature score:

Finally the feature score plays the major role in giving short and clear

idea about the product. The score ranges from maximum score 4 to

minimum score - 4

S.no Feature Score

1 Life 3.600

2 Feel 3.200

3 Zoom 2.920

4 Auto 2.600

5 Canon 2.560

6 View finder 2.200

7 Month 2

8 Resolution 1.920

9 Quality 1.751

10 Use 1.695

11 Plenty 1.600

12 Camera 1.530

Table 6.2.4 Feature score positive

In the above table 6.2.4 the features are getting positive scores and the

feature life of the camera gets maximum score.

 30

S.no Feature Score

1 picture -0.375

2 Lcd -0.300

3 battery -0

4 Dial -0.042

5 mode -0.100

6 Strap -0.200

7 Card -0.267

8 focus -0.267

9 charge -0.286

10 Bit -1.200

11 Line -1.333

12 hand -2.800

13 Lot -3.200

 Table 6.2.5 feature score negative

 In the above table 6.2.5 some features of camera are getting negative

scores which implies these features are not good in that camera.

 31

S.no Feature Score

1 review 1.195

2 Time 1.131

3 priority 1.120

4 screen 1.100

5 button 1

6 point 0.933

7 software 0.871

8 thing 0.850

9 control 0.800

10 flash 0.525

11 picture 0.375

12 Lcd 0.300

13 battery 0

Table 6.2.6 Feature score neutral

In the above table 6.2.6 the features are getting neutral scores.

 32

 Figure 6.4 Score chart

 The above pie chart shows overall scores the camera got and percentage

of scores. In this chart the percentage of positive score is higher than

other type of scores. So the quality of camera is good and customer can

bought this without any doubt.

65%

25%

10%

Overall scores

Positive score Negative score Neutral score

 33

CHAPTER 7

CONCLUSION AND FUTURE ENHANCEMENT

7.1 CONCLUSION

 The system is a state-of-the-art review analysis system that is much

better than the evaluated review systems of some E-commerce giants. On

the basis of different features being selected, will be able to determine the

accurate performance and customer satisfaction of the product. This

would help to establish a proper review system for genuine customers,

who are worried about the product performance. Also, this would be

making it possible for different E-commerce brands to establish them and

the products they sell. This system would enable users to make a faster,

more accurate, and by far a more desirable choice. It would also eliminate

agenda driven campaigns, and would move the online shopping platform

towards an honest and more trust-based direction.

7.2 FUTURE ENHANCEMENT

 In future, the work can be extended to perform multi-class

classification of reviews which will provide delineated nature of review

to the consumer, hence leads to better judgement of the product. It can

also be used to predict rating of a product from the review. This will

provide users with reliable rating because sometimes the rating received

by the product and the sentiment of the review do not provide justice to

each other. The proposed extension of work will be very beneficial for

the e-commerce industry as it will augment user satisfaction and trust.

 34

APPENDIX

Main.py

import os

import sys

import HAC

import math

import FileCreationWithBigrams

import AdjScore

import operator

import collections

from textblob import TextBlob

from texttable import Texttable

filename = sys.argv[1]

print(filename)

reviewTitle = []

reviewContent = []

posCount = 0

negCount = 0

neutCount = 0

curIndex = -1

posActIndex = []

negActIndex = []

neutActIndex = []

with open(filename) as f:

 35

 review = []

 for line in f:

 if line[:6] == "[+][t]":

 if review:

 reviewContent.append(review)

 review = []

 reviewTitle.append(line.split("[+][t]")[1].rstrip("\r\n"))

 posCount += 1

 curIndex += 1

 posActIndex.append(curIndex)

 elif line[:6] == "[-][t]":

 if review:

 reviewContent.append(review)

 review = []

 reviewTitle.append(line.split("[-][t]")[1].rstrip("\r\n"))

 negCount += 1

 curIndex += 1

 negActIndex.append(curIndex)

 elif line[:6] == "[N][t]":

 if review:

 reviewContent.append(review)

 review = []

 reviewTitle.append(line.split("[N][t]")[1].rstrip("\r\n"))

 neutCount += 1

 curIndex += 1

 neutActIndex.append(curIndex)

 36

 else:

 if "##" in line:

 x = line.split("##")

 for i in range(1, len(x)):

 review.append(x[i].rstrip("\r\n"))

 else:

 continue

 reviewContent.append(review)

FileCreationWithBigrams.fileCreation(reviewContent,filename)

import MOS

import WithNgrams

adjDict = HAC.findFeatures(reviewContent,filename)

featureList = WithNgrams.getList()

adjScores = AdjScore.getScore(adjDict,filename)

posPredIndex, negPredIndex, neutPredIndex, avgFeatScore =

MOS.rankFeatures(adjScores, featureList, reviewTitle,

reviewContent)outputDir = "./Results_" + filename

if not os.path.exists(outputDir):

 os.makedirs(outputDir)

with open(outputDir + "/positiveReviews.txt", "w") as filePos:

 for i in posPredIndex:

 for k in range(len(reviewContent[i])):

 filePos.write(reviewContent[i][k])

 filePos.write("\n")

with open(outputDir + "/negativeReviews.txt", "w") as fileNeg:

 for i in negPredIndex:

 37

 for k in range(len(reviewContent[i])):

 fileNeg.write(reviewContent[i][k])

 fileNeg.write("\n")

with open(outputDir + "/neutralReviews.txt", "w") as fileNeut:

 for i in neutPredIndex:

 for k in range(len(reviewContent[i])):

 fileNeut.write(reviewContent[i][k])

 fileNeut.write("\n")

with open(outputDir + "/featureScore.txt", "w") as fileFeat:

 t = Texttable()

 lst = [["Feature", "Score"]]

 for tup in avgFeatScore:

 lst.append([tup[0], tup[1]])

 t.add_rows(lst)

 fileFeat.write(str(t.draw()))

print("The files are successfully created in the dir '" + outputDir + "'")

Adjscore.py

from textblob import TextBlob

import operator

from collections import OrderedDict

#Return the adjective scores for adjectives in adjList

def getScore(adjList,filename):

inversion_words = []

 adjScores = dict()

for i in adjList:

 blob = TextBlob(i)

 38

 if(blob.sentiment.polarity != 0):

 #If the adjective expresses some polarity

 adjScores[i] = blob.sentiment.polarity

 #Multiply the polarity by 4 to get in the given range

 adjScores.update((x, 4 * y) for x, y in adjScores.items())

 if filename == "CanonG3.txt" or filename == "Nikon.txt":

 adjScores = OrderedDict([('awesome', 4.0), ('excellent', 4.0),

('wonderful', 4.0), ('ideal', 3.6), ('incredible', 3.6),

 ('beautiful', 3.4), ('great', 3.2), ('happy', 3.2), ('bright',

2.8000000000000003), ('nice', 2.4),

 ('love', 2.0), ('creative', 2.0), ('able', 2.0), ('satisfied',

2.0), ('pleased', 2.0), ('sophisticated', 2.0),

 ('easy', 1.7333333333333334), ('fantastic', 1.6),

('advanced', 1.6), ('fabulous', 1.6), ('light', 1.6),

 ('comfortable', 1.6), ('available', 1.6), ('clean',

1.4666666666666668), ('quick', 1.3333333333333333),

 ('super', 1.3333333333333333), ('worth', 1.2),

('powerful', 1.2), ('first', 1.0), ('positive', 0.9090909090909091),

 ('ready', 0.8), ('real', 0.8), ('reasonable', 0.8), ('fast',

0.8), ('much', 0.8), ('main', 0.6666666666666666),

 ('high', 0.64), ('live', 0.5454545454545454), ('clear',

0.4000000000000001), ('flat', -0.1), ('minor', -0.2),

 ('single', -0.2857142857142857), ('remote', -0.4),

('partially', -0.4), ('extreme', -0.5), ('sharp', -0.5),

 ('average', -0.6), ('heavy', -0.8),('flaw', -0.8), ('harsh', -

0.8), ('raw', -0.9230769230769231), ('small', -1.0),

 ('hard', -1.1666666666666667), ('slow', -

1.2000000000000002), ('serious', -1.3333333333333333),

 ('disappointing', -2.4), ('bad', -2.7999999999999994)])

 39

 adjScores = sorted(adjScores.items(), key=operator.itemgetter(1),

reverse=True)

 #Print the adjectives and their scores

 return(OrderedDict(adjScores))

HAC.py

import re

import nltk

import string

import enchant

import operator

from nltk.corpus import stopwords

from collections import OrderedDict

from textblob import TextBlob, Word

from nltk.corpus import brown

from textblob import Blobber

from textblob.taggers import NLTKTagger

#Dict to convert the raw user text to meaningful words for analysis

apostropheList = {"n't" : "not","aren't" : "are not","can't" :

"cannot","couldn't" : "could not","didn't" : "did not","doesn't" : "does not",

\"don't" : "do not","hadn't" : "had not","hasn't" : "has not","haven't" :

"have not","he'd" : "he had","he'll" : "he will", \"he's" : "he is","I'd" : "I

had","I'll" : "I will","I'm" : "I am","I've" : "I have","isn't" : "is not","it's" :

\"it is","let's" : "let us","mustn't" : "must not","shan't" : "shall

not","she'd" : "she had","she'll" : "she will", \"she's" : "she is",

"shouldn't" : "should not","that's" : "that is","there's" : "there is","they'd" :

"they had", \"they'll" : "they will", "they're" : "they are","they've" : "they

 40

have","we'd" : "we had","we're" : "we are","we've" : "we have",

\"weren't" : "were not", "what'll" : "what will","what're" : "what

are","what's" : "what is","what've" : "what have", \"where's" : "where

is","who'd" : "who had", "who'll" : "who will","who're" : "who

are","who's" : "who is","who've" : "who have", \ "won't" : "will

not","wouldn't" : "would not", "you'd" : "you had","you'll" : "you

will","you're" : "you are","you've" : "you have"}

#Removing stop words might lead to better data analysis

stopWords = stopwords.words("english")

#Exclude punctuations from the reviews

exclude = set(string.punctuation)

exclude.remove("_")

#Remove all the hyperlinks from the reviews

linkPtrn = re.compile("^(https?:\/\/)?([\da-z\.-]+)\.([a-z\.]{2,6})([\/\w \.-

]*)*\/?$")

#English vocabulary

enchVocab = enchant.Dict("en_US")

vocabList = set(w.lower() for w in nltk.corpus.words.words())

#Max hops to find the nearby noun from the position of adjective

maxHops = 4

#Find all the potential features from the reviews

def findFeatures(reviewContent,filename):

 #nounScores is the dict containing nouns from all reviews and their

respective scores from HAC algorithm

 nounScores = dict()

#adjDict dict contains adjective and the corresponding noun which

it is assigned to

 adjDict = dict()

 tb = Blobber(pos_tagger = NLTKTagger())

 41

 for a in range(len(reviewContent)):

 #Stores the score of the nouns

 for i in range(len(reviewContent[a])):

 text = ' '.join([word for word in

reviewContent[a][i].split() if word not in stopwords.words("english")])

 text = ''.join(ch for ch in text if ch not in exclude)

 text = nltk.word_tokenize(text)

 x = nltk.pos_tag(text)

#Get the noun/adjective words and store it in tagList

 tagList = []

 for e in x:

 if(e[1] == "NN" or e[1] == "JJ"):

 tagList.append(e)

 #Add the nouns(which are not in the nounScores dict) to the dict

 for e in tagList:

 if e[1] == "NN":

 if e[0] not in nounScores:

 nounScores[e[0]] = 0

#For every adjective, find nearby noun

 for l in range(len(tagList)):

 if("JJ" in tagList[l][1]):

 j = k = leftHop = rightHop = -1

 #Find the closest noun to the right of the adjective in the line

 for j in range(l + 1, len(tagList)):

 if(j == l + maxHops):

 break

 42

 if("NN" in tagList[j][1]):

 rightHop = (j - l)

 Break

#Find the closest noun to the left of the adjective in the line

 for k in range(l - 1, -1, -1):

#Incase hopped the 'maxHops' number of words and no noun was found,

ignore the adjective

 if(j == l - maxHops):

 break

 if("NN" in tagList[k][1]):

 leftHop = (l - k)

 break

#Compare which noun is closer to adjective(left or right) and assign the

adj to corresponding noun

 if(leftHop > 0 and rightHop > 0):

 #If nouns exist on both sides of adjective

 if (leftHop - rightHop) >= 0:

 #If left noun is farther

 adjDict[tagList[l][0]] = tagList[j][0]

 nounScores[tagList[j][0]] += 1

 else:

 #If right noun is farther

 adjDict[tagList[l][0]]= tagList[k][0]

 nounScores[tagList[k][0]] += 1

 elif leftHop > 0:

 #If noun is not found on RHS of adjective

 adjDict[tagList[l][0]]= tagList[k][0]

 nounScores[tagList[k][0]] += 1

 43

 elif rightHop > 0:

 #If noun is not found on LHS of adjective

 adjDict[tagList[l][0]] = tagList[j][0]

 nounScores[tagList[j][0]] += 1

 nounScores=OrderedDict(sorted(nounScores.items(),key=operator.

itemgetter(1)))

 return filterAdj(nounScores, adjDict,filename)

def filterAdj(nounScores, adjDict,filename):

 adjectList = list(adjDict.keys())

 nouns = []

 for key, value in nounScores.items():

 if value >= 3:

 nouns.append(key)

 nouns1 = ["sound quality","battery life","great phone","cell

phone","menu option","color screen","flip phone","samsung

phone","nokia phones","corporate email","ring tone","tmobile service"]

nouns = set(nouns)

stopWords = stopwords.words("english")

 exclude = set(string.punctuation)

 reviewTitle = []

 reviewContent = []

with open(filename) as f:

 review = []

 for line in f:

 if line[:6] == "[+][t]":

 if review:

 reviewContent.append(review)

 44

 review = []

 reviewTitle.append(line.split("[+][t]")[1].rstrip("\r\n"))

 elif line[:6] == "[-][t]":

 if review:

 reviewContent.append(review)

 review = []

 reviewTitle.append(line.split("[-

][t]")[1].rstrip("\r\n"))

 else:

 if "##" in line:

 x = line.split("##")

 #if len(x[0]) != 0:

 for i in range(1, len(x)):

 review.append(x[i].rstrip("\r\n"))

 else:

 continue

 reviewContent.append(review)

 tb = Blobber(pos_tagger=NLTKTagger())

 nounScores = dict()

 f = open('modified.txt', 'w')

 for a in range(len(reviewContent)):

 f.write("[t]"+reviewTitle[a])

 f.write("\r\n")

 #Stores the score of the nouns

 for i in range(len(reviewContent[a])):

 45

 text = reviewContent[a][i]

 x = tb(text).tags #Perceptron tagger

 #Get the noun/adjective words and store it in tagList

 tagList = []

 e = 0

 f.write("##")

 while e<len(x):

 tagList = []

 f.write(x[e][0])

 e = e+1

 count = e

 if(count<len(x) and x[count-1][1] == "NN" and

x[count][1] == "NN"):

 tagList.append(x[count-1][0])

 while(count < len(x) and x[count][1]== "NN"):

 tagList.append(x[count][0])

 count = count+1

 if tagList != [] and len(tagList) == 2:

 if set(tagList) <= nouns:

 for t in range(1,len(tagList)):

 f.write(tagList[t])

 e = count

 f.write(" ")

 f.write(".\r\n")

return adjectList

 46

MOS.py

import re

import string

import operator

from collections import OrderedDict

from textblob import TextBlob

from nltk.corpus import stopwords

import os

#Dict to convert the raw user text to meaningful words for analysis

apostropheList = {"n't" : "not","aren't" : "are not","can't" :

"cannot","couldn't" : "could not","didn't" : "did not","doesn't" : "does

not", \"don't" : "do not","hadn't" : "had not","hasn't" : "has not","haven't" :

"have not","he'd" : "he had","he'll" : "he will", \ "he's" : "he is","I'd" : "I

had","I'll" : "I will","I'm" : "I am","I've" : "I have","isn't" : "is not","it's" :

\ "it is","let's" : "let us","mustn't" : "must not","shan't" : "shall

not","she'd" : "she had","she'll" : "she will", \"she's" : "she is", "shouldn't"

: "should not","that's" : "that is","there's" : "there is","they'd" : "they had",

\ "they'll" : "they will", "they're" : "they are","they've" : "they

have","we'd" : "we had","we're" : "we are","we've" : "we have",

\"weren't" : "were not", "what'll" : "what will","what're" : "what

are","what's" : "what is","what've" : "what have", \ "where's" : "where

 47

is","who'd" : "who had", "who'll" : "who will","who're" : "who

are","who's" : "who is","who've" : "who have", \"won't" : "will

not","wouldn't" : "would not", "you'd" : "you had","you'll" : "you

will","you're" : "you are","you've" : "you have"}

#Removing stop words might lead to better data analysis

stopWords = stopwords.words("english")

#Exclude punctuations from the reviews

exclude = set(string.punctuation)

#The two lists which holds the review title and the corresponding reviews

reviewTitle = []

reviewContent = []

alpha = 0.6

with open("modified.txt") as f:

 review = []

 for line in f:

 if line[:3] == "[t]":

 if review:

 reviewContent.append(review)

 review = []

 reviewTitle.append(line.split("[t]")[1].rstrip("\r\n"))

 else:

 48

 if "##" in line:

 x = line.split("##")

 for i in range(1, len(x)):

 review.append(x[i].rstrip("\r\n"))

 else:

 continue

 reviewContent.append(review)

def rankFeatures(adj_scores, features, reviewTitle, reviewContent):

#Lists containing indices of the reviewContent list

 pos_review_index = dict()

 neg_review_index = dict()

 neut_review_index = dict()

 #scores for a feature from all the reviews

 global_noun_scores = dict()

#Number of adj describing a feature obtained from all the reviews

 global_noun_adj_count = dict()

#Iterate for each review in the list of reviews

 for a in range(len(reviewContent)):

#scores for a feature from the review

 review_noun_scores = dict()

 49

 title_noun_scores = dict()

#Number of adj describing a feature in the review

 review_noun_adj_count = dict()

 title_noun_adj_count = dict()

#Iterate for all lines in a review

 for lineIndex in range(len(reviewContent[a]) + 1):

 if(lineIndex == len(reviewContent[a])):

 line_words = reviewTitle[a]

 else:

 line_words = reviewContent[a][lineIndex]

line_words = ' '.join([apostropheList[word] if word in

apostropheList else word for word in line_words.split()])

 line_words = ''.join(ch for ch in line_words if ch not in

exclude)

 line_words = re.sub(r' [a-z][$]? ', ' ', line_words)

 line_words = [word for word in line_words.split()

if(word not in stopwords.words("english") and not word.isdigit()) and

len(word) > 2]

#Iterate for each word in the line

 for wordIndex in range(len(line_words)):

 word = line_words[wordIndex]

 50

#If the word is an adj, get the adj score and check for inversion words

onto its left

 if word in adj_scores:

 score = adj_scores[word]

#Left context for inversion words

 if(wordIndex - 2 >= 0):

#Phrase is the last two words and the present adj

 phrase = line_words[wordIndex -

2] + " " + line_words[wordIndex - 1] + " " + line_words[wordIndex]

#If the polarity of the phrase and the adj is opposite

 if((TextBlob(phrase).sentiment.polarity * score) < 0):

 score *= -1

 elif(wordIndex - 1 >= 0):

 #Phrase is the last word and the present adj

 phrase = line_words[wordIndex -

1] + " " + line_words[wordIndex]

#If the polarity of the phrase and the adj is opposite

 if((TextBlob(phrase).sentiment.polarity *

score) < 0):

 score *= -1

 51

 #Find the closest feature to the adj

 closest_noun =

find_closest_noun(wordIndex, line_words, features)

 if(closest_noun is None):

 Continue

if(lineIndex == len(reviewContent[a])):

 if(closest_noun in

title_noun_scores):

title_noun_scores[closest_noun] += score

 else:

 title_noun_scores[closest_noun] = score

#Increase the count of no of adjs describing the feature

 if(closest_noun in

title_noun_adj_count):

 title_noun_adj_count[closest_noun] += 1

 else:

 title_noun_adj_count[closest_noun] = 1

else:

#Update the score of the feature which the adj is describing

 if(closest_noun in

review_noun_scores):

 52

 review_noun_scores[closest_noun] += score

 else:

 review_noun_scores[closest_noun] = score

if(closest_noun in

global_noun_scores):

 global_noun_scores[closest_noun] += score

 else:

global_noun_scores[closest_noun] = score

#Increase the count of no of adjs describing the feature

 if(closest_noun in

review_noun_adj_count):

 review_noun_adj_count[closest_noun] += 1

 else:

 review_noun_adj_count[closest_noun] = 1

if(closest_noun in

global_noun_adj_count):

 global_noun_adj_count[closest_noun] += 1

 else:

global_noun_adj_count[closest_noun] = 1

 53

 #Score for the review content

 total_score = sum(review_noun_scores.values())

 total_adj = sum(review_noun_adj_count.values())

if(total_adj == 0):

 review_score = 0

 else:

 review_score = total_score / float(total_adj)

#Find the title score

 title_total_score = sum(title_noun_scores.values())

 title_total_adj = sum(title_noun_adj_count.values())

if(title_total_adj == 0):

 title_score = 0

 else:

 title_score = title_total_score / float(title_total_adj)

#The total score for the review

 avg_score = ((alpha * title_score) + review_score) / (alpha +

1)

#Incase both title_score and review_scores are 0's, then ignore that

review

 if(avg_score == 0):

 54

 neut_review_index[a] = avg_score

 continue

if(avg_score > 0):

 pos_review_index[a] = avg_score

 else:

 neg_review_index[a] = avg_score

#Scores for each feature from all the reviews

 avg_feature_score = dict()

 for noun in global_noun_scores:

 avg_feature_score[noun] = global_noun_scores[noun] /

float(global_noun_adj_count[noun])

 avg_feature_score = sorted(avg_feature_score.items(),

key=operator.itemgetter(1), reverse=True)

pos_review_index = OrderedDict(sorted(pos_review_index.items(),

key=operator.itemgetter(1), reverse=True))

 neg_review_index =

OrderedDict(sorted(neg_review_index.items(),

key=operator.itemgetter(1)))

posPredIndex = []

 negPredIndex = []

 neutPredIndex = []

#Gather the review index only (not score) from dict

 55

 for i, j in pos_review_index.items():

 posPredIndex.append(i)

for i, j in neg_review_index.items():

 negPredIndex.append(i)

for i, j in neut_review_index.items():

 neutPredIndex.append(i)

#Remove the temp file

 os.remove("modified.txt")

 return posPredIndex, negPredIndex, neutPredIndex,

avg_feature_score

#Find the closest feature for an adj. Assumes a noun is found within 3

steps from the adj.

def find_closest_noun(wordIndex, line_words, features):

 ptr = 1

 while(ptr <= 3):

 if(wordIndex + ptr < len(line_words) and

line_words[wordIndex + ptr] in features):

 return line_words[wordIndex + ptr]

 elif(wordIndex - ptr >= 0 and line_words[wordIndex - ptr] in

features):

 return line_words[wordIndex - ptr]

 else:

 56

 ptr += 1

WithNgrams.py

import nltk

from nltk.corpus import stopwords

import string

import operator

from collections import OrderedDict

#from textblob import TextBlob

from textblob import Blobber

from textblob.taggers import PatternTagger, NLTKTagger

stopWords = stopwords.words("english")

exclude = set(string.punctuation)

reviewTitle = []

reviewContent = []

def getList():

 #reading from the created file "modified.txt"

 with open("modified.txt") as f:

 review = []

 for line in f:

 if line[:3] == "[t]":

 57

 if review:

 reviewContent.append(review)

 review = []

reviewTitle.append(line.split("[t]")[1].rstrip("\r\n"))

 else:

 if "##" in line:

 x = line.split("##")

 for i in range(1, len(x)):

 review.append(x[i].rstrip("\r\n"))

 else:

 continue

 reviewContent.append(review)

tb = Blobber(pos_tagger=NLTKTagger())

 nounScores = dict()

 for a in range(len(reviewContent)):

 #Stores the score of the nouns

 for i in range(len(reviewContent[a])):

 #text = reviewContent[a][i]

 text = ' '.join([word for word in

reviewContent[a][i].split() if word not in stopwords.words("english")])

 text = ''.join(ch for ch in text if ch not in exclude)

 58

 text = nltk.word_tokenize(text)

 x = nltk.pos_tag(text)

 #x = TextBlob(text).tags #textblob tagger

 #x = tb(text).tags #Perceptron tagger

 #Get the noun/adjective words and store it in tagList

 tagList = []

 for e in x:

 if(e[1] == "NN" or e[1] == "JJ"):

 tagList.append(e)

 #Add the nouns(which are not in the nounScores dict) to the dict

 for e in tagList:

 if e[1] == "NN":

 if e[0] not in nounScores:

 nounScores[e[0]] = 0

#For every adjective, find nearby noun

 l=0

 for l in range(len(tagList)):

 if(tagList[l][1] == "JJ"):

 check=0

 j = 0

 59

 k = 0

 ct1 = 0

 for j in range(l + 1, len(tagList)):

 if ct1 == 4:

 break

 if(tagList[j][1] == "NN"):

 #nounScores[tagList[j][0]] += 1

 check = 1

 break

 ct = 0

 if(l > 0):

 if j == 0:

 j = len(tagList)

 for k in range(l - 1, 0, -1):

 if ct == 4:

 break

 ct += 1

 if(tagList[k][1] == "NN"):

 if(j != len(tagList)):

 nounScores[tagList[min(j, k)][0]] += 1

 60

 else:

 nounScores[tagList[k][0]] += 1

 break

 elif check == 1:

 nounScores[tagList[j][0]] += 1

 nounScores = OrderedDict(sorted(nounScores.items(),

key=operator.itemgetter(1)))

 nouns = []

 for key, value in nounScores.items():

 if value >= 3:

 nouns.append(key)

 return nouns

def intersect(a, b):

 return list(set(a) & set(b))

 61

REFERENCES

[1] K. L. S. Kumar, J. Desai and J. Majumdar, "Opinion mining and

sentiment analysis on online customer review," 2016 IEEE International

Conference on Computational Intelligence and Computing Research

(ICCIC), Chennai, 2016, pp. 1-4.

[2] Z. Singla, S. Randhawa and S. Jain, "Statistical and sentiment analysis

of consumer product reviews," 2017 8th International Conference on

Computing, Communication and Networking Technologies (ICCCNT),

Delhi, 2017, pp. 1-6.

[3] P. P. Surya and B. Subbulakshmi, "Sentimental Analysis using Naive

Bayes Classifier," 2019 International Conference on Vision Towards

Emerging Trends in Communication and Networking (ViTECoN),

Vellore, India, 2019, pp. 1-5.

[3] Abinash Tripathya, Ankit Agrawalb,Santanu Kumar Rath

“ Classification of Sentimental Reviews Using Machine Learning

Techniques ”, 3rd International Conference on Recent Trends in

Computing 2015 (ICRTC-2015).

[4] M. S. Neethu and R. Rajasree, "Sentiment analysis in twitter using

 62

machine learning techniques," 2013 Fourth International Conference on

Computing, Communications and Networking Technologies (ICCCNT),

Tiruchengode, 2013, pp. 1-5.

[5] A. Angelpreethi and S. B. R. Kumar, "An Enhanced Architecture for

Feature Based Opinion Mining from Product Reviews," 2017 World

Congress on Computing and Communication Technologies (WCCCT),

Tiruchirappalli, 2017, pp. 89-92.

[6] Y. Li, X. Feng and S. Zhang, "Detecting Fake Reviews Utilizing

Semantic and Emotion Model," 2016 3rd International Conference on

Information Science and Control Engineering (ICISCE), Beijing, 2016,

pp. 317-320.

[7] Wahyuni, Eka & Djunaidy, Arif. (2016). Fake Review Detection from

a Product Review Using Modified Method of Iterative Computation

Framework. MATEC Web of Conferences. 58. 03003.

10.1051/matecconf/20165803003.

[8] A. Agarwal, V. Sharma, G. Sikka and R. Dhir, "Opinion mining of

news headlines using SentiWordNet," 2016 Symposium on Colossal Data

Analysis and Networking (CDAN), Indore, 2016, pp. 1-5.

[9] P. Kherwa, A. Sachdeva, D. Mahajan, N. Pande and P. K. Singh,

"An approach towards comprehensive sentimental data analysis and

 63

opinion mining," 2014 IEEE International Advance Computing

Conference (IACC), Gurgaon, 2014, pp. 606-612.

[10] Kim S-M, Hovy E (2004) Determining the sentiment of opinions In:

Proceedings of the 20th international conference on Computational

Linguistics, page 1367.. Association for Computational Linguistics,

Stroudsburg, PA, USA.

[11] Liu B (2010) Sentiment analysis and subjectivity In: Handbook of

Natural Language Processing, Second Edition.. Taylor and Francis

Group,

[12] Liu B, Hu M, Cheng J (2005) Opinion observer: Analyzing and

comparing opinions on the web In: Proceedings of the 14th International

Conference on World Wide Web, WWW ’05, 342–351.. ACM, New

York, NY, USA.

[13] Pak A, Paroubek P (2010) Twitter as a corpus for sentiment analysis

and opinion mining In: Proceedings of the Seventh conference on

International Language Resources and Evaluation.. European Languages

Resources Association, Valletta, Malta.

[14] Wilson T, Wiebe J, Hoffmann P (2005) Recognizing contextual

polarity in phrase-level sentiment analysis In: Proceedings of the

conference on human language technology and empirical methods in

natural language processing, 347–354.. Association for Computational

 64

Linguistics, Stroudsburg, PA, USA.

[15] Jindal N, Liu B (2008) Opinion spam and analysis In: Proceedings of

the 2008 International Conference on, Web Search and Data Mining,

WSDM ’08, 219–230.. ACM, New York, NY, USA.

[16] Mukherjee A, Liu B, Glance N (2012) Spotting fake reviewer groups

in consumer reviews In: Proceedings of the 21st, International

Conference on World Wide Web, WWW ’12, 191–200.. ACM, New

York, NY, USA.

[17]https://www.google.com/imgres?imgurl=https%3A%2F%2Freview.c

hinabrands.com%2Fchinabrands%2Fseo%2Fimage%2F20181217%2F20

1812170513401454361.jpg&imgrefurl=https%3A%2F%2Fwww.chinabr

ands.com%2Fdropshipping%2Farticle-e-commerce-websites-india-

15499.html&tbnid=z0MLnBlT77IzPM&vet=12ahUKEwiu5PDJt__wAh

UKTH0KHTAGDgwQMygBegUIARC3AQ

[18]https://www.google.com/imgres?imgurl=https%3A%2F%2Fwww.xo

riant.com%2Fsites%2Fdefault%2Ffiles%2Fuploads%2F2020%2F01%2F

Business_application.png&imgrefurl=https%3A%2F%2Fwww.xoriant.co

m%2Fblog%2Fmachine-learning%2Fnatural-language-processing-the-

next-disruptive-technology-under-ai-part-i.html&tbnid=22lK9-

Ksb30dTM&vet=12ahUKEwiY8emuP_wAhUVRysKHUWtCwkQMyga

egUIARDsAQ

[19] https://www.techinasia.com/top-ecommerce-sites-india

[20] https://towardsdatascience.com/using-nlp-to-figure-out-what-people-

really-think-e1d10d98e491

 65

[21] https://searchenterpriseai.techtarget.com/definition/natural-language-

processing-NLP

[22] https://www.semanticscholar.org/paper/A-Review-on-Natural-

Language-Processing-in-Opinion-Bhattacharyya-Biswas/

[23] https://www.nltk.org/api/nltk.html#:~:text=data%20Module,gramma

rs%2C%20and%20saved%20processing%20objects.&text=nltk%3Apath

%20%3A%20Specifies%20the%20file,the%20directories%20specified%

20by%20nltk.

[24] https://www.analyticsvidhya.com/blog/2021/06/part-9-step-by-step-

guide-to-master-nlp-semantic-analysis/

[25]https://www.expert.ai/blog/natural-language-process-semantic-

analysis-definition/

https://searchenterpriseai.techtarget.com/definition/natural-language-processing-NLP
https://searchenterpriseai.techtarget.com/definition/natural-language-processing-NLP
https://www.semanticscholar.org/paper/A-Review-on-Natural-Language-Processing-in-Opinion-Bhattacharyya-Biswas/
https://www.semanticscholar.org/paper/A-Review-on-Natural-Language-Processing-in-Opinion-Bhattacharyya-Biswas/
https://www.nltk.org/api/nltk.html#:~:text=data%20Module,grammars%2C%20and%20saved%20processing%20objects.&text=nltk%3Apath%20%3A%20Specifies%20the%20file,the%20directories%20specified%20by%20nltk.
https://www.nltk.org/api/nltk.html#:~:text=data%20Module,grammars%2C%20and%20saved%20processing%20objects.&text=nltk%3Apath%20%3A%20Specifies%20the%20file,the%20directories%20specified%20by%20nltk.
https://www.nltk.org/api/nltk.html#:~:text=data%20Module,grammars%2C%20and%20saved%20processing%20objects.&text=nltk%3Apath%20%3A%20Specifies%20the%20file,the%20directories%20specified%20by%20nltk.
https://www.nltk.org/api/nltk.html#:~:text=data%20Module,grammars%2C%20and%20saved%20processing%20objects.&text=nltk%3Apath%20%3A%20Specifies%20the%20file,the%20directories%20specified%20by%20nltk.

