
IMPLEMENTATION OF ADVANCED ENCRYPTION

STANDARD TARGETED AT FPGA ARCHITECTURES

A PROJECT REPORT

Submitted by

NITHIN SHYAM S

PRADEEP KUMAR T

RAHUL S

in partial fulfillment for the award of the degree

of

BACHELOR OF ENGINEERING

in

ELECTRONICS AND COMMUNICATION ENGINEERING

PSG INSTITUTE OF TECHNOLOGY AND APPLIED RESEARCH,

COIMBATORE - 641 062

ANNA UNIVERSITY : CHENNAI 600 025

MAY 2021

ii

 ANNA UNIVERSITY : CHENNAI 600 025

 BONAFIDE CERTIFICATE

Certified that this project report “IMPLEMENTATION OF ADVANCED

ENCRYPTION STANDARD TARGETED AT FPGA ARCHITECTURES” is

the bonafide work of NITHIN SHYAM S (715517106026), PRADEEP KUMAR

T (715516106028) and RAHUL S (715516106034) who carried out the project

work under my supervision.

SIGNATURE SIGNATURE

Dr. P. Vetrivelan M.S., Ph.D., Mr. K. Paldurai M.E.,

HEAD OF THE DEPARTMENT SUPERVISOR

Associate Professor Assistant Professor

ECE Department ECE Department

PSG Institute of Technology PSG Institute of Technology

And Applied Research, And Applied Research,

Coimbatore - 641 062. Coimbatore - 641 062.

Submitted for the Anna University Viva-Voce examination held on 06/08/2021.

INTERNAL EXAMINER EXTERNAL EXAMINER

iii

ACKNOWLEDGEMENT

We would like to thank the Management of PSG Institute of Technology

and Applied Research for providing us with excellent facilities for the completion

of this project.

We are grateful to our Secretary, Dr. P. V. Mohanram, of PSG Institute

of Technology and Applied Research for giving us support throughout the project.

We would like to thank Dr. G. Chandramohan, Principal of PSG Institute

of Technology and Applied Research for encouraging us throughout the project.

We are thankful to Dr. P. Vetrivelan, Associate Professor and Head,

Department of Electronics and Communication Engineering, for his constant

support throughout the project.

It is our pleasure to thank our Project Guide Mr. K. Paldurai, Assistant

Professor, Department of Electronics and Communication Engineering, for

helping us complete the project successfully.

We also would like to thank all the faculty members and staff of the

Electronics and Communication Engineering Department for their kind

cooperation and encouragement during the course of this work.

iv

 ABSTRACT

Data has become an invaluable commodity in this digital era. All organizations

depend on data to track their growth and to serve their end goal better. The data has

to be kept confidentially as data is as important as money in many cases. Hackers

continue to pose a threat by stealing data. Cybercrime is predicted to inflict damages

totaling $6 trillion USD globally in 2021 and is estimated to cost the world $10.5

trillion by 2025. Cryptography played a very important role in the World Wars and

the cracking of the Germans’ crypto system by the British led to their ultimate

downfall.

From the 1970s, scientists have incorporated cryptography into computers and all

digital communications equipment. The Data Encryption Standard was standardized

in 1977 and served well until the 1990s when it was finally cracked and deemed

insecure. So, the National Institute of Standards and Technology made a call for a

better algorithm and in 2001, the Advanced Encryption Standard was introduced.

AES comes in 3 different key sizes 128, 192 and 256-bit lengths. The 128-bit version

was implemented is several designs focusing on specific purposes and

predominantly used for nearly 20 years. With the current trend of technological

advancement, it can be broken in a few years. NIST claims that AES-128 is fine at

the very least up to 2030. The AES can be programmed in software or built with

pure hardware. However, Field Programmable Gate Arrays (FPGAs) offer a quicker

and more customizable solution. Our project compares the 128-bit and 256-bit AES

algorithms implemented on FPGA architectures. The implemented design handles

both encryption and decryption and was tested on the Xilinx xc7z020-clg484-1

FPGA using the Xilinx Vivado 2019.1 software in Verilog language.

v

TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.

 ABSTRACT iv

 LIST OF TABLES vii

 LIST OF FIGURES viii

 LIST OF ABBREVIATIONS x

1 INTRODUCTION 1

 1.1 NEED FOR THE PROJECT 1

 1.2 CRYPTOGRAPHY 2

 1.3 OBJECTIVES OF CRYPTOGRAPHY 3

 1.4 CLASSIFICATION OF CRYPTOGRAPHY 3

 1.5 ORGANIZATION OF CHAPTERS 4

2 LITERATURE REVIEW 5

3 ENCRYPTION 7

 3.1 SYMMETRIC KEY OR SECRET KEY

 SYSTEM

7

 3.1.1 Stream Cipher 8

 3.1.2 Block Cipher 10

 3.2 ASYMMETRIC KEY OR PUBLIC KEY

 SYSTEM

11

4 ADVANCED ENCRYPTION STANDARD 12

 4.1 MATHEMATICS INVOLVED 13

 4.1.1 Galois Field 13

 4.1.2 28 Galois Field Transformation 14

 4.1.3 Finite Field Addition and Subtraction 14

 4.1.4 Finite Field Multiplication and

 Multiplicative Inverse

16

 4.2 THE STATE 18

vi

 4.2.1 The State as an Array of Columns 19

 4.3 STEPS INVOLVED IN AES ALGORITHM 20

 4.3.1 SubBytes (Substitute Bytes) 22

 4.3.2 Shift Rows 24

 4.3.3 Mix Columns 26

 4.3.4 Add Round Key 28

 4.3.5 Key Expansion 29

 4.4 SPECIFICATIONS OF AES 31

 4.5 CRYPTANALYSIS RESULTS OF AES 31

 4.6 AES ENCRYPTION (ROUND BY ROUND) 32

 4.7 AES DECRYPTION (ROUND BY ROUND) 35

5 IMPLEMENTATION 38

 5.1 AES-128 RESULTS 42

 5.2 AES-256 RESULTS 44

6 CONCLUSION & FUTURE SCOPE 47

 6.1 CONCLUSION 47

 6.2 FUTURE SCOPE 47

 REFERENCES 49

vii

LIST OF TABLES

TABLE NO. TABLE NAME PAGE NO.

4.1 AES Relation Between Key Length and

Number of Rounds

31

5.1 xc7z020-clg484-1 FPGA Specifications 38

viii

LIST OF FIGURES

FIGURE NO. FIGURE NAME PAGE NO.

1.1 Cryptography Classification 4

3.1 Symmetric Encryption 7

3.2 Stream Cipher 8

3.3 Block Cipher 10

3.4 Asymmetric Encryption 11

4.1 State Matrix 19

4.2 AES General Structure 20

4.3 S-Box 22

4.4 SubBytes Transformation 23

4.5 Inverse S-Box 24

4.6 Shift Rows Transformation 25

4.7 Inverse Shift Rows Transformation 26

4.8 Mix Columns Matrix 26

4.9 Inverse Mix Columns Matrix 27

4.10 Mix Columns Transformation 27

4.11 Add Round Key Transformation 28

4.12 Block Diagram of Key Expansion 29

4.13 Functional Representation of Key Expansion 30

4.14 RCon/RC for 10 rounds 30

4.15 AES Encryption Block Diagram 32

4.16 AES-128 Encryption Example 33, 34

4.17 AES Decryption as an inverse of Encryption 35

4.18 AES-128 Decryption Example 36, 37

5.1 Zedboard 39

5.2 Zedboard Block Diagram 40

5.3 Testcases 41

5.4 AES-128 Waveform 42

ix

5.5 AES-128 implemented in Hardware 42

5.6 Performance of AES-128 Design 43

5.7 Resource Utilization of AES-128 Design in Hardware 44

5.8 AES-256 Waveform 44

5.9 AES-256 implemented in Hardware 45

5.10 Performance of AES-256 Design 45

5.11 Resource Utilization of AES-256 Design in Hardware 46

x

LIST OF ABBREVIATIONS

AES Advanced Encryption Standard

BRAM Block Random Access Memory

BUFG Global Buffer

DES Data Encryption Standard

ECC Elliptic Curve Cryptography

FF Flip Flop

FIPS Federal Information Processing Standards

FPGA Field-Programmable Gate Array

GF Galois Field

IEC International Electrotechnical Commission

IO Input/Output

ISO International Organization for Standardization

LED Light Emitting Diode

LUT Look-up Table

MITM Meet-In-The-Middle

NIST National Institute of Standards and Technology

RAM Random Access Memory

RCon/RC Round Constant

RSA Rivest-Shamir-Adleman

S-BOX Substitution Box

SoC System on Chip

VHDL High-Speed Integrated Circuit Hardware Description

Language

XOR Exclusive OR

1

CHAPTER 1

INTRODUCTION

Data confidentiality has become a very essential part of any form of digital

communication. Data is gold in today’s age. 463 exabytes of data will be generated

each day by humans as of 2025. Technologies such as Big Data, IoT, Machine

learning and Artificial Intelligence produce huge amounts of data to be stored and

processed. The processed result is very crucial for the advancement of any project

or organization. The data has to be communicated so that it provides help to others

in need. Most of the times, it needs to be sent through the internet which is an

insecure channel. Take for instance, theft of medical records can be devastating. So,

to make sure only the intended recipient gets access to the shared data, cryptography,

to be more precise, encryption is used. It makes sure that the data which is sent

through an insecure channel is scrambled and doesn’t make sense to any interceptor.

The data is unscrambled at the receiver’s end.

1.1 NEED FOR THE PROJECT

The Advanced Encryption Standard, also referred to as Rijndael, is a specification

for the encryption of electronic data established by the U.S. National Institute of

Standards and Technology (NIST) in 2001. It is a widely adopted encryption

standard and has been poplar since its introduction. AES-128 is the most popular

version in use today. This project implements the 256-bit key length version in

FPGA and compares it with the 128-bit implementation and provides the differences

in performance and resource utilization. This data is useful for estimation purposes

when moving from 128-bit encryption to 256-bit encryption system.

2

1.2 CRYPTOGRAPHY

The word “cryptography” comes from the Greek work “kryptos” meaning hidden or

secret. It is the study of secure communications techniques that allow only the sender

and the intended recipient of a message to view its contents. It involves encryption,

which is the act of scrambling ordinary text into what's known as ciphertext and

decryption, where the ciphertext is unscrambled into ordinary text.

Ancient Egyptians were known to use these methods in complex hieroglyphics, and

Roman Emperor Julius Caesar is credited with using one of the first modern ciphers.

Prior to the early 20th century, cryptography was mainly concerned with linguistic

and lexicographic patterns. Since then, the emphasis has shifted, and cryptography

now makes extensive use of mathematics, including aspects of information theory,

computational complexity, statistics, combinatorics, abstract algebra, number

theory, and finite mathematics generally.

Cryptography is best known as a way of keeping the contents of a message secret.

Confidentiality of network communications, for example, is of great importance for

e-commerce and other network applications. However, the applications of

cryptography go far beyond simple confidentiality. In particular, cryptography

allows the network business and customer to verify the authenticity and integrity of

their transactions used the primitive call digital signature. If the trend to a global

electronic marketplace continues, better cryptographic techniques will have to be

developed to protect business transactions. Sensitive information sent over an open

network may be scrambled into a form that cannot be understood by a hacker or

eavesdropper. This is done using a mathematical formula, known as an encryption

algorithm, which transforms the bits of the message into an unintelligible form. The

intended recipient has a decryption algorithm for extracting the original message.

There are many examples of information on open networks, which need to be

3

protected in this way, for instance, bank account details, credit card transactions, or

confidential health or tax records.

1.3 OBJECTIVES OF CRYPTOGRAPHY

• Confidentiality of the message: only the authorized recipient should be able

to extract the content of the cypher. In addition, obtaining information about

the content of the message (such as a statistical distribution of certain

characters) should not be possible, once the cryptographic analysis becomes

easier.

• Message integrity: the recipient must be able to determine if the message was

altered during transmission.

• Authentication of the sender: the recipient should be able to identify the sender

and verify if it was him who sent the message.

• Irrevocability of the sender: it should not be possible to deny the authorship

of the message.

1.4 CLASSIFICATION OF CRYPTOGRAPHY

• Symmetric Key Cryptography aka Secret Key Cryptography - It is an

encryption system where the sender and receiver of message use a single

common key to encrypt and decrypt messages. Symmetric Key Systems are

faster and simpler but the problem is that sender and receiver have to

somehow exchange key in a secure manner.

• Hash Functions - There is no usage of any key in this algorithm. A hash value

with fixed length is calculated as per the plain text which makes it impossible

4

for contents of plain text to be recovered. Many operating systems use hash

functions to encrypt passwords.

• Asymmetric Key Cryptography aka Public Key Cryptography - Under this

system a pair of keys is used to encrypt and decrypt information. A public key

is used for encryption and a private key is used for decryption. Public key and

Private Key are different. Even if the public key is known by everyone the

intended receiver can only decode it because he alone knows the private key.

Fig 1.1 Cryptography Classification

1.5 ORGANIZATION OF CHAPTERS

Chapter 2 details the knowledge gathered from literature survey. Encryption and its

types are described in Chapter 3. Chapter 4 goes into detail about the AES algorithm

itself, about its history and its structure with an example. The features of

implantation and the results obtained are shown in Chapter 5. The project’s

conclusion and future scope are present in Chapter 6.

5

CHAPTER 2

LITERATURE REVIEW

The NIST published the specifications of AES in the FIPS publication 197 on

November 26, 2001. It specifies the structure for AES in detail. Implementations of

the algorithm with different key sizes is also discussed. The procedures to perform

the transformations, Substitute Bytes, Shift Rows, Mix Columns, Add Round Key

and Key Expansion are provided along with pseudo codes. The standard S-box is

given. The equivalents of the transformation used to decrypt are also provided with

their pseudo codes.

The research done by Pawel Chodowiec and Kris Gaj in “Very Compact FPGA

Implementation of the AES Algorithm” provides a beautiful insight into the

implementation of AES in FPGA. It has been implemented in the Spartan II FPGA

focusing on compaction. Encryption, decryption and key schedule are all

implemented using small resources of only 222 Slices and 3 Block RAMs. The

performance is 4 clock cycles per round with a throughput of 166 Mbps.

The work done by Shuang Chen, Wei Hu, Zhenhao Li in “High Performance Data

Encryption with AES Implementation on FPGA” three solutions for high throughput

or low latency. The maximum throughput achieved is 31.296 Gbps which has a

latency of 4.09 ns. For optimization, loop unrolling has been implemented partially

or fully in the designs.

In “Efficient Implementation of AES Algorithm in FPGA Device” by Swinder Kaur

and Prof. Renu Vig, speed is increased by processing multiple rounds

simultaneously but at the cost of increased area. Algorithmic optimization

techniques have also been used which includes exclusion of shift row stage and on

6

the fly round key generation. Their design consumes 6279 Slices and 5 B-RAMs and

outputs data with a throughput of 1.18 Gbps.

Encryption and Decryption have been designed and implemented for the AES-128

algorithm in “Efficient Implementation of AES Algorithm On FPGA”. The

implementation uses VHDL language and RTL structures are developed and

simulated in Xilinx ISE 14.1 Project Navigator.

“FPGA Implementation of AES Algorithm” by Mr. Atul M. Borkar , Dr. R. V.

Kshirsagar and Mrs. M. V. Vyawahare takes a look at the simulation od AES-128

with speed optimization. They have achieved a throughput of 352 Mbps (51 clock

cycles). VHDL was the programming language used.

7

CHAPTER 3

ENCRYPTION

Encryption is the process through which data is encoded so that it remains hidden

from or inaccessible to unauthorized users. It helps protect private information,

sensitive data, and can enhance the security of communication between client apps

and servers. This process converts the original representation of the information,

known as plaintext, into an alternative form known as ciphertext. Ideally, only

authorized parties can decipher a ciphertext back to plaintext and access the original

information.

There are two classes of algorithm in encryption, an asymmetric key and symmetric

key.

3.1 SYMMETRIC KEY OR SECRET KEY SYSTEM

Fig. 3.1 Symmetric Encryption

8

In a symmetric or private key algorithm, in the ordinary case, the communication

only uses only one key. A user Alice sends the secret private key Kc to another user

Bob user before the start of the communication between them. Both sides use the

same secret key to encrypt and decrypt the exchanged information. Data Encryption

Standard (DES), Advanced Encryption Standard (AES) and Blowfish are examples

of symmetric key algorithm.

Symmetric Key Cryptography is further classified into stream cipher and block

cipher.

3.1.1 STREAM CIPHER

Fig 3.2 Stream Cipher

9

A stream cipher is a method of encrypting text in which a cryptographic key and

algorithm are applied to each binary digit in a data stream, one bit at a time. They

are designed to be extremely fast. They are faster than block ciphers. This method is

not much used in modern cryptography. A keystream is used which is generated

from a random seed by a pseudo-random generator. Encryption is accomplished by

combining the key stream with the plaintext, usually with the bitwise XOR

operation. Decryption is performed by applying the reverse transformation to the

cipher text using the same secret key. The encryption of any particular plaintext with

a block cipher will result in the same cipher text when the same key is used. With a

stream cipher, the transformation of these smaller plaintext units will vary,

depending on when they are encountered during the encryption process. The one-

time pad is the most secure encryption possible digitally.

Characteristics of Stream Cipher:

• Symmetric encryption

• Usually implemented in hardware

• Encrypts by operating on a continuous data stream

• Stream cipher treats the message as a stream of bits and performs

mathematical functions on them individually.

• Statistically unpredictable

• Much faster than any block cipher

10

3.1.2 BLOCK CIPHER

Fig. 3.3 Block Cipher

In a block cipher, the plaintext is broken into blocks of a set length and the bits in

each block are encrypted together. This Transformation takes place under the action

of a user-provided secret key. Decryption is performed by applying the reverse

transformation to the cipher text block using the same secret key. The block lengths

can be 128, 192 or 256 bits. Examples of block cipher are AES, DES and Blowfish.

Characteristics of Block Cipher:

• Breaks the plaintext into blocks and encrypts each with the same algorithm

• The properties of a cipher should contain confusion and diffusion

• Uses a Feistel network or a Substitution-Permutation network

• Are more suitable for software implementations, because they work with

blocks of data which is usually the width of a data bus (64 bits).

11

3.2 ASYMMETRIC KEY OR PUBLIC KEY SYSTEM

Fig. 3.4 Asymmetric Encryption

Asymmetric encryption involves the use of multiple keys for data encryption and

decryption. To be exact, the asymmetric encryption method comprises two

encryption keys that are mathematically related to each other. These keys are known

as the public key and private key. As a result, the asymmetric encryption method is

also known as “public key cryptography”.

In communication between Alice and Bob, Alice uses the public key Ke of Bob to

encrypt the message, in a way that only B (neither A) can decrypt this message using

his private key Kd. This system is also used to sign a message digitally. Rivest-

Shamir-Adleman (RSA) is widely used asymmetric key algorithm for decades and

Elliptic Curve Cryptography (ECC) as an alternative to RSA which offers highest

security with small bit length of key.

12

CHAPTER 4

ADVANCED ENCRYPTION STANDARD

DES was deprecated in 2002 as it was proved insecure. This is mainly due to its

smaller 56-bit key size. DES Keys can be broken in 56 hours using the EFF DES

cracker - Deep Crack. The algorithm is believed to be practically secure in the form

of Triple DES (3DES), although there are theoretical attacks. In recent years, the

cipher has been superseded by the Advanced Encryption Standard (AES).

The Advanced Encryption Standard (AES) specifies a FIPS-approved cryptographic

algorithm that can be used to protect electronic data. The AES algorithm is a

symmetric block cipher that can encrypt (encipher) and decrypt (decipher)

information. The AES algorithm is capable of using cryptographic keys of 128, 192,

and 256 bits to encrypt and decrypt data in blocks of 128 bits.

In January 1997, the National Institute of Standards and Technology (NIST)

announced the initiation of an effort to develop the AES and made a formal call for

algorithms on September 12, 1997. After reviewed the results of this Preliminary

research, the algorithms MARS, RC6TM, Rijndael, Serpent and Two fish were

selected as finalist. And further reviewed public analysis of the finalist, NIST has

decided to propose Rijndael as the new Advanced Encryption Standard (AES) on

2nd October 2000. It was adopted by the U.S. government in 2001. In the summer

of 2001, AES replaced the aging DES as the Federal Information Processing

Standard (FIPS). It is also the standard for block cipher in ISO/IEC 18033-3. DES

is seen as reaching the end of its life, as cracking of its cipher is seen to be more

tractable on current computer hardware. The AES algorithm will be used for many

applications within the government an in the private sector.

13

AES is a subset of the Rijndael block cipher developed by two Belgian

cryptographers, Vincent Rijmen and Joan Daemen, who submitted a proposal to

NIST during the AES selection process. Rijndael is a family of ciphers with different

key and block sizes. For AES, NIST selected three members of the Rijndael family,

each with a block size of 128 bits, but three different key lengths: 128, 192 and 256

bits.

4.1 MATHEMATICS INVOLVED

This section provides a brief introduction to the fundamental mathematical concepts

of finite fields needed to understand. Several operations in AES are defined at byte

level, with bytes representing elements in the finite field gf(28). Other operations are

defined in terms of 4-byte words.

4.1.1 GALOIS FIELD

The elements of Galois Field gf(pn) is defined as

gf(pn) = (0, 1, 2, . . . , p − 1) ∪

(p, p + 1, p + 2, . . . , p + p − 1) ∪

(p2, p2 + 1, p2 + 2, . . . , p2 + p − 1) ∪ . . . ∪

(pn−1, pn−1 + 1, pn−1 + 2, . . . , pn−1 + p − 1)

where p ∈ P and n ∈ Z+. The order of the field is given by pn while p is

called the characteristic of the field. On the other hand, gf, as one may have

guessed it, stands for Galois Field. Also note that the degree of polynomial

14

of each element is at most n − 1.

4.1.2 28 GALOIS FIELD TRANSFORMATION

The byte value in AES is represented as a set of bits (0 or 1) and is represented as

the collection of bits separated by comma as {b7, b6, b5, b4, b3, b2, b1, b0}. These

bytes are interpreted as finite field elements using polynomial representation as

b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x + b0

Example:

The byte with hexadecimal value '85' (binary 01010101) corresponds with

polynomial

x6 + x4 + x2 + 1

4.1.3 FINITE FIELD ADDITION AND SUBTRACTION

An addition in Galois Field is pretty straightforward. Suppose f(p) and g(p)

are polynomials in gf(pn). Let A = an−1an−2 . . . a1a0, B = bn−1bn−2 . . . b1b0,

and C = cn−1cn−2 . . . c1c0 be the coefficients of f(p), g(p), and h(p) = f(p) +

g(p) respectively. If ak, bk, and ck are the coefficients of pk in f(p), g(p), and h(p)

respectively then

ck = ak + bk (mod p)

Similarly, if h(p) = f(p) - g(p) then

ck = ak - bk (mod p)

15

where 0 ≤ k ≤ n − 1. Since computer works in gf(28), if ak and bk refer to the kth bit

in the bytes we wish to add then ck, the kth bit in the resulting byte, is given by

ck = ak + bk (mod 2)

Since 0 + 1 = 1 + 0 = 1 (mod 2) = 1 and 0 + 0 = 0 (mod 2) = 1 + 1 =

2 (mod 2) = 0, we may think of addition as exclusive-or operation which is

also known as XOR operation. That is, XOR operation returns 0 if both

entries are equal and returns 1 otherwise which also means that subtraction

and addition is the same in Galois Field whose characteristic field is 2. Due

to the nature of Galois Field, addition and subtraction of two bytes will not

go any bigger than 11111111 = 255, the biggest value one byte can store,

and is therefore a safe operation.

Example:

Suppose we are working in gf(28), then 83 + 249 is

83 + 249 = (26 + 24 + 21 + 20) + (27 + 26 + 25 + 24 + 23 + 20)

 = 27 + 2 · 26 + 25 + 2 · 24 + 23 + 21 + 2 · 20

 = 27 + 25 + 23 + 21

 = 169

16

Alternatively, from binary numeral system perspective,

83 + 249 = 01010011 + 11111001

 = 10101010

 = 169

and the results coincide.

4.1.4 FINITE FIELD MULTIPLICATION AND MULTIPLICATIVE

INVERSE

Multiplication in Galois Field, however, requires more tedious work. Suppose f(p)

and g(p) are polynomials in gf(pn) and let m(p) be an irreducible polynomial (or a

polynomial that cannot be factored) of degree at least n in gf(pn). We want m(p) to

be a polynomial of degree at least n so that the product of two f(p) and g(p) does not

exceed 11111111 = 255 as the product needs to be stored as a byte. If h(p) denotes

the resulting product then

h(p) = (f(p) · g(p)) (mod m(p))

On the other hand, the multiplicative inverse of f(p) is given by a(p) such that

(f(p) · a(p)) (mod m(p)) = 1

Note that figuring out the product of two polynomials and the multiplicative inverse

of a polynomial requires both reducing coefficients modulo p and reducing

polynomials modulo m(p). The reduced polynomial can be calculated easily with

long division while the best way to compute the multiplicative inverse is by using

Extended Euclidean Algorithm.

17

Example:

{53} • {CA}

(x6 + x4 + x + 1) • (x7 + x6 + x3 + x) =

(x13 + x12 + x9 + x7) + (x11 + x10 + x7 + x5) + (x8 + x7 + x4 + x2) + (x7 + x6 + x3 + x)

= x13 + x12 + x11 + x10 + x9 + x8 + x6 + x5 + x4 + x3 + x2 + x

and

(x13 + x12 + x11 + x10 + x9 + x8 + x6 + x5 + x4 + x3 + x2 + x) % (x8 + x4 + x3 + x + 1)

= (11111101111110 mod 100011011)

= {3F7E mod 11B}

= {01} = 1 (decimal),

which can be demonstrated through long division (shown using binary notation,

since it lends itself well to the task. Notice that exclusive OR is applied in the

example and not arithmetic subtraction, as one might use in grade-school long

division.

18

11111101111110 (mod) 100011011

^100011011

 1110000011110

 ^100011011

 110110101110

 ^100011011

 10101110110

 ^100011011

 0100011010

 ^100011011

 00000001

(The elements {53} and {CA} are multiplicative inverses of one another since their

product is 1.)

4.2 THE STATE

AES breaks data into states or matrix of bytes of pre-determined size and encrypt

every state independently of each other. Putting together bytes into a state has no

cryptographic significance, yet it is an important process without whom other

operations cannot be conducted. In Rijndael with a 128-bit key, an array or a matrix

with 4 rows and 4 columns is formed where each entry is a byte or 8 bits so that there

are essentially 16 bytes in total. Additionally, we may also think of a 128-bit state

space as a vector in gf(28)16 where each component of the vector is a byte.

19

Fig. 4.1 State Matrix

4.2.1 THE STATE AS AN ARRAY OF COLUMNS

The four bytes in each column of the State array form 32-bit words. The state can

hence be interpreted as a one-dimensional array of 32-bit words (columns) w0, w1,

w2 and w3.

w0 = s00 s10 s20 s30

w1 = s01 s11 s21 s31

w2 = s02 s12 s22 s32

w3 = s03 s13 s23 s33

20

4.3 STEPS INVOLVED IN AES ALGORITHM

Fig. 4.2 AES General Structure

1) Key Expansions — round keys are derived from the cipher key using

Rijndael's key schedule. AES requires a separate 128-bit round key block for each

round plus one more.

21

2) Initial Round

AddRoundKey—each byte of the state is combined with a block of the

round key using bitwise XOR.

3) Rounds

a) SubBytes

b) ShiftRows

c) MixColumns

d) AddRoundKey

4) Final Round

a) SubBytes

b) ShiftRows

c) AddRoundKey

22

4.3.1 SUBBYTES (SUBSTITUTE BYTES)

In this method each byte, each element in the matrix is replaced using the Rijndael’s

S-Box (Substitution Box). Each byte is replaced with its multiplicative inverse.

Fig. 4.3 S-Box

23

Fig. 4.4 SubBytes Transformation

For inverting the SubBytes operation while decrypting, substitute the bytes in the

state matrix using the following s-box(inverse s-box).

24

Fig. 4.5 Inverse S-Box

4.3.2 SHIFT ROWS

ShiftRows is perhaps the simplest operation to scramble data. Like the name suggest,

ShiftRows shifts row n to the left by n−1 unit, so that the first row remains unchanged

while the second row is shifted to the left by 1, third row by 2, and fourth row by 3.

25

That is, if we let S and S’ to denote the state before and after performing ShiftRows

then if S’ is given by

Fig. 4.6 Shift Rows Transformation

For inverting the operation, the same sequence of operations is performed but the

shifting is done to the right.

26

Fig. 4.7 Inverse Shift Rows Transformation

4.3.3 MIX COLUMNS

The next method messes with columns instead of rows. MixColumns takes each

column in the state and perform linear transformation on it. Since each column has

4 rows, the matrix transformation has to be 4 × 4 and is defined as follow

Fig. 4.8 Mix Columns Matrix

27

And since linear transformation has an inverse, this operation is invertible. The

matrix used to revert the state back to its original standing is given by

Fig. 4.9 Inverse Mix Columns Matrix

Fig. 4.10 Mix Columns Transformation

28

4.3.4 ADD ROUND KEY

AddRoundKey is the most important stage as it is the stage that provides uniqueness

to the encryption thus is inevitably a complex operation by itself. The output of

AddRoundKey fully depends on the key or the password specified by the user. In

this stage a subkey, which is the same size as the state, is computed from the main

key using Rijndael’s Key Schedule. Once a subkey is derived, the sum of the subkey

and the state is calculated.

Fig. 4.11 Add Round Key Transformation

29

4.3.5 KEY EXPANSION

This process consists of three parts: Rotate, RCon or RC (Round Constant), and

SubByes. The first part is to rotate or to shift the bytes that form the keyword 8 bits

to the left, which is similar to what happens to the second row in ShiftRows. The

second part is to apply sub-operation called RCon; And the third part is to perform

Rijndael’s S-Box whose details have been dissected in SubBytes. Next step in this

operation is to expand the main key until we have enough subkeys.

Fig. 4.12 Block Diagram of Key Expansion

30

Fig. 4.13 Functional Representation of Key Expansion

Fig. 4.14 RCon/RC for 10 rounds

31

4.4 SPECIFICATIONS OF AES

• The length of the input block, the output block and the State is always 128

bits.

• The length of the Cipher Key can be either 128, 192, or 256 bits.

• The number of rounds to be performed during the execution of the algorithm

is dependent on the key size.

Length of Key (bits) Number of Rounds

128 10

192 12

256 14

Table 4.1 AES Relation Between Key Length and Number of Rounds

4.5 CRYPTANALYSIS RESULTS OF AES

In AES, there are 3.4 x 1038 possible 128-bit keys and 1.1 x 1077 possible 256-bit

keys. Pure brute forcing would take billions of years to crack the smaller 128-bit key.

No one can be sure how long the AES - or any other cryptographic algorithm - will

remain secure. However, according to NIST’s estimates AES should serve at least 30

years without any changes in the algorithm.

The computational complexity of cracking an AES-128 key using the Biclique attack

is 2126.18 using publicly known attacks while it is 2254.4 for AES-256. This attack is a

variant of the meet-in-the-middle (MITM) method of cryptanalysis. It uses a biclique

structure.

32

4.6 AES ENCRYPTION (ROUND BY ROUND)

Fig. 4.15 AES Encryption Block Diagram

33

The following figures show the values in the state matrix as the cipher progresses

for a key length of 128 bits. The columns from 1 to 5 show the results of

AddRoundKey, SubBytes, ShiftRows, MixColumns and the Round Key itself

respectively.

34

Fig. 4.16 AES-128 Encryption Example

* The above image was captured from Rijndael-Inspector-v1.1.

35

4.7 AES DECRYPTION (ROUND BY ROUND)

Fig. 4.17 AES Decryption as an inverse of Encryption

The following figures show the values in the state matrix as the decryption

progresses for a key length of 128 bits. The columns from 1 to 5 show the results of

InvSubBytes, InvShiftRows, InvMixColumns, Round Key itself and the result of

AddRoundKey respectively.

36

37

Fig 4.18 AES-128 Decryption Example

* The above image was captured from Rijndael-Inspector-v1.1.

38

CHAPTER 5

IMPLEMENTATION

Both the variants 128-bit and the 256-bit were implemented in hardware, Xilinx

xc7z020-clg484-1 FPGA using the Xilinx Vivado 2019.1 software. Verilog was

used for programming. The design implemented handles both encryption and

decryption. It tries to balance resource utilization and performance.

Features of Implementation:

• All keys are generated at the beginning of the encryption process.

• SubBytes and ShiftRows transformations were combined into a single

transformation to improve performance (same with InvSubBytes and

InvShiftRows).

• Standard NIST testcases were used for testing.

• Loop unrolling optimization was used.

The FPGA was contained in the Zedboard Zynq Evaluation and Development Kit

which contains the Zynq-7000 SoC. The SoC has 512 MB DDR3 RAM.

The Specification is the FPGA is given in table 5.1.

Resource Available

LUT 53200

FF 106400

BRAM 140

IO 200

BUFG 32

Table 5.1 xc7z020-clg484-1 FPGA Specifications

39

Zedboard, with its IOs marked, is pictured in Fig. 5.1 and its block diagram in Fig.

5.2. The SoC has a clock speed of 100MHz.

Fig. 5.1 Zedboard

40

Fig. 5.2 Zedboard Block Diagram

All the testcases used are pictured in Fig. 5.3.

41

Fig. 5.3 Testcases

42

5.1 AES-128 RESULTS

Fig. 5.4 AES-128 Waveform

Fig. 5.5 AES-128 implemented in Hardware

43

The working of AES-128 design can be seen from the figures 5.4 and 5.5. The

waveform displays clock, key for cipher, inputs and outputs for both encryption and

decryption. The outputs are produced as the clock progresses. The values displayed

correspond to the first test case of AES-128, shown in Fig. 5.3. In hardware, the first

4 bits of the ciphertext and decrypted plaintext of the first testcase displayed using

the 8 Red LEDs can be seen, i.e. 0x36 or 00110110.

Fig. 5.6 Performance of AES-128 Design

The performance of the AES-128 design in terms of clock cycles is shown in Fig.

5.6. The key expansion stage has to generate 10 keys and each generation took

exactly 1 clock cycle to output its corresponding round key. During encryption, the

MixColumns transformation takes 1 clock cycle and as the SubBytes and the

ShiftRows are combined, they together take 1 clock cycle to complete (same during

decryption as InvSubBytes and InvShiftRows are combined). So, encryption and

decryption rounds take 2 clock cycles each. The actual encryption process

(excluding the key expansion phase) proceeds as soon as the first round key is

generated and finishes at 19 clock cycles. The actual decryption process can only

start after the last key is generated i.e. after 10 clock cycles and thus, taking 10 more

clock cycles than the encryption process and finishing at 29 clock cycles.

44

Fig. 5.7 Resource Utilization of AES-128 Design in Hardware

The resource utilization of the design is shown in Fig. 5.7 (captured in Vivado

2019.1). One clock source is used. 3854 (7.24%) Look Up Tables, 1691 (1.59%)

Flip Flops and 70.5 (50.36%) Block RAM of the FPGA have been consumed.

5.2 AES-256 RESULTS

Fig. 5.8 AES-256 Waveform

45

Fig. 5.9 AES-256 implemented in Hardware

The working of AES-256 design can be seen from the figures 5.8 and 5.9. The values

displayed correspond to the first test case of AES-256, shown in Fig. 5.3. In

hardware, the first 4 bits of the ciphertext and decrypted plaintext of the first testcase

displayed using the 8 Red LEDs can be seen, i.e. 0xF6 or 11110110.

Fig. 5.10 Performance of AES-256 Design

46

The performance of the AES-256 design in terms of clock cycles is shown in Fig.

5.10. The key expansion stage has to generate 13 keys and each generation took

exactly 1 clock cycle to output its round key. Encryption and decryption rounds take

2 clock cycles each as described for AES-128 design. The actual encryption process

(excluding the key expansion phase) proceeds as soon as the first round key is

generated and finishes at 27 clock cycles. The actual decryption process can only

start after the last key is generated i.e. after 13 clock cycles and thus, taking 10 more

clock cycles than the encryption process and finishing at 40 clock cycles.

Fig. 5.11 Resource Utilization of AES-256 Design in Hardware

The resource utilization of the design is shown in Fig. 5.11 (captured in Vivado

2019.1). One clock source is used. 4544 (8.54%) Look Up Tables, 1595 (1.50%)

Flip Flops and 70.5 (50.36%) Block RAM of the FPGA have been consumed.

47

CHAPTER 6

CONCLUSION & FUTURE SCOPE

6.1 CONCLUSION

As seen from the implementation results, we were successfully able to generate the

performance metrics. The following details can be observed from the results.

• Decryption takes extra clock cycles than encryption (to be precise, it is the

number of clock cycles taken for key expansion) because the last round key

is required for the process to start.

• The number of clock cycles required scaled linearly as only 4 extra rounds

were needed for AES-256 which takes 2 clock cycles per round.

• The BRAM usage stayed the same for both versions.

• Nearly 18% more LUTs and 5.6% less Flip Flops were required for the

implementation of AES-256 than AES-128.

From the results of the cryptanalysis in section 4.4, it can be said that the cracking

of AES-256 is computationally nearly 2128 times more complex than AES-128. The

former offers exponentially higher encryption security and considering the

improvement, the increase in the required resources seems less significant.

6.2 FUTURE SCOPE

How long a cipher will be secure cannot be said certainly, as newer attacks on

existing algorithms are being researched every day. It is only possible to give a

loose estimate. AES is expected to secure communications at least until 2030

without any modifications in its existing structure. It is being used to secure

48

communications in various applications such as banking, satellite communication,

defense applications, government documents, confidential corporate documents,

personal storage devices and wireless networks (Wi-Fi, Zigbee, Wibree). As

technology matures, the designs can be made to execute quicker with reduced area

and resource consumption.

NIST is taking initiatives to develop newer and better standards of encryption as the

importance of privacy is growing day by day. As a result, researchers are developing

never algorithms and are tested rigorously. A few examples of such algorithms are

Anubis, Grand Cru and Kalyna. None of them have provided any significant

advantage over Rijndael algorithm. So, it remains as the standard.

Newer attacks are also researched intensely. It is better to find the vulnerability and

patch it before the knowledge reaches the wrong hands. So, all security algorithms

have to be tested for, against attacks on all platforms regularly so that the principle

of confidentiality is not breached.

49

REFERENCES

[1] FIPS 197, “Advanced Encryption Standard (AES)”, November 26, 2001

[2] Chodowiec P., Gaj K. (2003) Very Compact FPGA Implementation of the AES

Algorithm. In: Walter C.D., Koç Ç.K., Paar C. (eds) Cryptographic Hardware and

Embedded Systems - CHES 2003. CHES 2003. Lecture Notes in Computer

Science, vol 2779. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-

540-45238-6_26

[3] J. Daemen and V. Rijmen, “AES Proposal: Rijndael”, AES Algorithm

Submission, September 3, 1999

[4] Wei Wang, Jie Chen, Fei Xu, “An implementation of AES algorithm Based on

FPGA”, 2012 9th International Conference on Fuzzy Systems and Knowledge

Discovery, May 2012

[5] Swinder Kaur, Prof. Renu Vig, “Efficient Implementation of AES Algorithm in

FPGA Device”, ICCIMA, Dec 2007

[6] Hrushikesh S. Deshpande, Kailash J. Karande, Altaaf O. Mulani, “Efficient

Implementation of AES Algorithm on FPGA”, International Conference on

Communication and Signal Processing, April, 2014

[7] Atul M. Borkar, R. V. Kshirsagar, M. V. Vyawahare, “FPGA Implementation

of AES Algorithm”, 2011 3rd International Conference on Electronics Computer

Technology

[8] Behrouz A. Forouzan, Debdeep Mukhopadhyay, “Cryptography and Network

Security (2nd Edition)”, McGraw-Hill

[9] C K Shyamala, Dr T R Padmanabhan, N Harini, “Cryptography and Security”,

Wiley India

50

[10] William Stallings, “Cryptography and Network Security (6th Edition)”,

Pearson

[11] Shuang Chen, Wei Hu, Zhenhao Li, “High Performance Data Encryption with

AES Implementation on FPGA”, 2019 IEEE 5th Intl Conference on Big Data

Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance

and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and

Security (IDS)

[12] Christoforus Juan Benvenuto, “Galois Field in Cryptography”, 2012

[13] https://www.researchgate.net/

[14]

https://www.commonlounge.com/discussion/6747358d828a45c99f61f4c09ff2f371

[15] https://pequalsnp-team.github.io/writeups/Bad-Aes

[16] https://sectigostore.com/blog/types-of-encryption-what-to-know-about-

symmetric-vs-asymmetric-encryption/

[17] https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

[18]

https://www.tutorialspoint.com/cryptography/advanced_encryption_standard.htm

https://www.researchgate.net/
https://www.commonlounge.com/discussion/6747358d828a45c99f61f4c09ff2f371
https://pequalsnp-team.github.io/writeups/Bad-Aes
https://sectigostore.com/blog/types-of-encryption-what-to-know-about-symmetric-vs-asymmetric-encryption/
https://sectigostore.com/blog/types-of-encryption-what-to-know-about-symmetric-vs-asymmetric-encryption/
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://www.tutorialspoint.com/cryptography/advanced_encryption_standard.htm

