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                                              ABSTRACT 

Data has become an invaluable commodity in this digital era. All organizations 

depend on data to track their growth and to serve their end goal better. The data has 

to be kept confidentially as data is as important as money in many cases. Hackers 

continue to pose a threat by stealing data. Cybercrime is predicted to inflict damages 

totaling $6 trillion USD globally in 2021 and is estimated to cost the world $10.5 

trillion by 2025. Cryptography played a very important role in the World Wars and 

the cracking of the Germans’ crypto system by the British led to their ultimate 

downfall. 

From the 1970s, scientists have incorporated cryptography into computers and all 

digital communications equipment. The Data Encryption Standard was standardized 

in 1977 and served well until the 1990s when it was finally cracked and deemed 

insecure. So, the National Institute of Standards and Technology made a call for a 

better algorithm and in 2001, the Advanced Encryption Standard was introduced. 

AES comes in 3 different key sizes 128, 192 and 256-bit lengths. The 128-bit version 

was implemented is several designs focusing on specific purposes and 

predominantly used for nearly 20 years. With the current trend of technological 

advancement, it can be broken in a few years. NIST claims that AES-128 is fine at 

the very least up to 2030. The AES can be programmed in software or built with 

pure hardware. However, Field Programmable Gate Arrays (FPGAs) offer a quicker 

and more customizable solution.  Our project compares the 128-bit and 256-bit AES 

algorithms implemented on FPGA architectures. The implemented design handles 

both encryption and decryption and was tested on the Xilinx xc7z020-clg484-1 

FPGA using the Xilinx Vivado 2019.1 software in Verilog language. 
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CHAPTER  1 

INTRODUCTION 

Data confidentiality has become a very essential part of any form of digital 

communication. Data is gold in today’s age. 463 exabytes of data will be generated 

each day by humans as of 2025. Technologies such as Big Data, IoT, Machine 

learning and Artificial Intelligence produce huge amounts of data to be stored and 

processed. The processed result is very crucial for the advancement of any project 

or organization. The data has to be communicated so that it provides help to others 

in need. Most of the times, it needs to be sent through the internet which is an 

insecure channel. Take for instance, theft of medical records can be devastating. So, 

to make sure only the intended recipient gets access to the shared data, cryptography, 

to be more precise, encryption is used. It makes sure that the data which is sent 

through an insecure channel is scrambled and doesn’t make sense to any interceptor. 

The data is unscrambled at the receiver’s end. 

 

1.1 NEED FOR THE PROJECT 

The Advanced Encryption Standard, also referred to as Rijndael, is a specification 

for the encryption of electronic data established by the U.S. National Institute of 

Standards and Technology (NIST) in 2001. It is a widely adopted encryption 

standard and has been poplar since its introduction. AES-128 is the most popular 

version in use today. This project implements the 256-bit key length version in 

FPGA and compares it with the 128-bit implementation and provides the differences 

in performance and resource utilization. This data is useful for estimation purposes 

when moving from 128-bit encryption to 256-bit encryption system. 
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1.2 CRYPTOGRAPHY 

The word “cryptography” comes from the Greek work “kryptos” meaning hidden or 

secret. It is the study of secure communications techniques that allow only the sender 

and the intended recipient of a message to view its contents. It involves encryption, 

which is the act of scrambling ordinary text into what's known as ciphertext and 

decryption, where the ciphertext is unscrambled into ordinary text. 

Ancient Egyptians were known to use these methods in complex hieroglyphics, and 

Roman Emperor Julius Caesar is credited with using one of the first modern ciphers. 

Prior to the early 20th century, cryptography was mainly concerned with linguistic 

and lexicographic patterns. Since then, the emphasis has shifted, and cryptography 

now makes extensive use of mathematics, including aspects of information theory, 

computational complexity, statistics, combinatorics, abstract algebra, number 

theory, and finite mathematics generally. 

Cryptography is best known as a way of keeping the contents of a message secret. 

Confidentiality of network communications, for example, is of great importance for 

e-commerce and other network applications. However, the applications of 

cryptography go far beyond simple confidentiality. In particular, cryptography 

allows the network business and customer to verify the authenticity and integrity of 

their transactions used the primitive call digital signature. If the trend to a global 

electronic marketplace continues, better cryptographic techniques will have to be 

developed to protect business transactions. Sensitive information sent over an open 

network may be scrambled into a form that cannot be understood by a hacker or 

eavesdropper. This is done using a mathematical formula, known as an encryption 

algorithm, which transforms the bits of the message into an unintelligible form. The 

intended recipient has a decryption algorithm for extracting the original message. 

There are many examples of information on open networks, which need to be 
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protected in this way, for instance, bank account details, credit card transactions, or 

confidential health or tax records. 

 

1.3 OBJECTIVES OF CRYPTOGRAPHY 

• Confidentiality of the message: only the authorized recipient should be able 

to extract the content of the cypher. In addition, obtaining information about 

the content of the message (such as a statistical distribution of certain 

characters) should not be possible, once the cryptographic analysis becomes 

easier. 

• Message integrity: the recipient must be able to determine if the message was 

altered during transmission. 

• Authentication of the sender: the recipient should be able to identify the sender 

and verify if it was him who sent the message. 

• Irrevocability of the sender: it should not be possible to deny the authorship 

of the message. 

 

1.4 CLASSIFICATION OF CRYPTOGRAPHY 

• Symmetric Key Cryptography aka Secret Key Cryptography - It is an 

encryption system where the sender and receiver of message use a single 

common key to encrypt and decrypt messages. Symmetric Key Systems are 

faster and simpler but the problem is that sender and receiver have to 

somehow exchange key in a secure manner.  

• Hash Functions - There is no usage of any key in this algorithm. A hash value 

with fixed length is calculated as per the plain text which makes it impossible 
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for contents of plain text to be recovered. Many operating systems use hash 

functions to encrypt passwords. 

• Asymmetric Key Cryptography aka Public Key Cryptography - Under this 

system a pair of keys is used to encrypt and decrypt information. A public key 

is used for encryption and a private key is used for decryption. Public key and 

Private Key are different. Even if the public key is known by everyone the 

intended receiver can only decode it because he alone knows the private key. 

 

Fig 1.1 Cryptography Classification 

 

1.5 ORGANIZATION OF CHAPTERS 

Chapter 2 details the knowledge gathered from literature survey. Encryption and its 

types are described in Chapter 3. Chapter 4 goes into detail about the AES algorithm 

itself, about its history and its structure with an example. The features of 

implantation and the results obtained are shown in Chapter 5. The project’s 

conclusion and future scope are present in Chapter 6. 
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CHAPTER 2 

LITERATURE REVIEW 

The NIST published the specifications of AES in the FIPS publication 197 on 

November 26, 2001. It specifies the structure for AES in detail. Implementations of 

the algorithm with different key sizes is also discussed. The procedures to perform 

the transformations, Substitute Bytes, Shift Rows, Mix Columns, Add Round Key 

and Key Expansion are provided along with pseudo codes. The standard S-box is 

given. The equivalents of the transformation used to decrypt are also provided with 

their pseudo codes.  

The research done by Pawel Chodowiec and Kris Gaj in “Very Compact FPGA 

Implementation of the AES Algorithm” provides a beautiful insight into the 

implementation of AES in FPGA. It has been implemented in the Spartan II FPGA 

focusing on compaction. Encryption, decryption and key schedule are all 

implemented using small resources of only 222 Slices and 3 Block RAMs. The 

performance is 4 clock cycles per round with a throughput of 166 Mbps.  

The work done by Shuang Chen, Wei Hu, Zhenhao Li in “High Performance Data 

Encryption with AES Implementation on FPGA” three solutions for high throughput 

or low latency. The maximum throughput achieved is 31.296 Gbps which has a 

latency of 4.09 ns. For optimization, loop unrolling has been implemented partially 

or fully in the designs. 

In “Efficient Implementation of AES Algorithm in FPGA Device” by Swinder Kaur 

and Prof. Renu Vig, speed is increased by processing multiple rounds 

simultaneously but at the cost of increased area. Algorithmic optimization 

techniques have also been used which includes exclusion of shift row stage and on 
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the fly round key generation. Their design consumes 6279 Slices and 5 B-RAMs and 

outputs data with a throughput of 1.18 Gbps.  

Encryption and Decryption have been designed and implemented for the AES-128 

algorithm in “Efficient Implementation of AES Algorithm On FPGA”. The 

implementation uses VHDL language and RTL structures are developed and 

simulated in Xilinx ISE 14.1 Project Navigator. 

“FPGA Implementation of AES Algorithm” by Mr. Atul M. Borkar , Dr. R. V. 

Kshirsagar and Mrs. M. V. Vyawahare takes a look at the simulation od AES-128 

with speed optimization. They have achieved a throughput of 352 Mbps (51 clock 

cycles). VHDL was the programming language used. 
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CHAPTER 3 

ENCRYPTION 

Encryption is the process through which data is encoded so that it remains hidden 

from or inaccessible to unauthorized users. It helps protect private information, 

sensitive data, and can enhance the security of communication between client apps 

and servers. This process converts the original representation of the information, 

known as plaintext, into an alternative form known as ciphertext. Ideally, only 

authorized parties can decipher a ciphertext back to plaintext and access the original 

information. 

There are two classes of algorithm in encryption, an asymmetric key and symmetric 

key. 

 

3.1 SYMMETRIC KEY OR SECRET KEY SYSTEM 

 

Fig. 3.1 Symmetric Encryption 
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In a symmetric or private key algorithm, in the ordinary case, the communication 

only uses only one key. A user Alice sends the secret private key Kc to another user 

Bob user before the start of the communication between them. Both sides use the 

same secret key to encrypt and decrypt the exchanged information. Data Encryption 

Standard (DES), Advanced Encryption Standard (AES) and Blowfish are examples 

of symmetric key algorithm. 

Symmetric Key Cryptography is further classified into stream cipher and block 

cipher.  

 

3.1.1 STREAM CIPHER 

 

Fig 3.2 Stream Cipher 
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A stream cipher is a method of encrypting text in which a cryptographic key and 

algorithm are applied to each binary digit in a data stream, one bit at a time. They 

are designed to be extremely fast. They are faster than block ciphers. This method is 

not much used in modern cryptography. A keystream is used which is generated 

from a random seed by a pseudo-random generator. Encryption is accomplished by 

combining the key stream with the plaintext, usually with the bitwise XOR 

operation. Decryption is performed by applying the reverse transformation to the 

cipher text using the same secret key. The encryption of any particular plaintext with 

a block cipher will result in the same cipher text when the same key is used. With a 

stream cipher, the transformation of these smaller plaintext units will vary, 

depending on when they are encountered during the encryption process. The one-

time pad is the most secure encryption possible digitally. 

Characteristics of Stream Cipher: 

• Symmetric encryption 

• Usually implemented in hardware 

• Encrypts by operating on a continuous data stream 

• Stream cipher treats the message as a stream of bits and performs 

mathematical functions on them individually. 

• Statistically unpredictable 

• Much faster than any block cipher 
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3.1.2 BLOCK CIPHER 

 

Fig. 3.3 Block Cipher 

 

In a block cipher, the plaintext is broken into blocks of a set length and the bits in 

each block are encrypted together. This Transformation takes place under the action 

of a user-provided secret key. Decryption is performed by applying the reverse 

transformation to the cipher text block using the same secret key. The block lengths 

can be 128, 192 or 256 bits. Examples of block cipher are AES, DES and Blowfish.  

Characteristics of Block Cipher: 

• Breaks the plaintext into blocks and encrypts each with the same algorithm 

• The properties of a cipher should contain confusion and diffusion 

• Uses a Feistel network or a Substitution-Permutation network 

• Are more suitable for software implementations, because they work with 

blocks of data which is usually the width of a data bus (64 bits). 
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3.2 ASYMMETRIC KEY OR PUBLIC KEY SYSTEM 

 

Fig. 3.4 Asymmetric Encryption 

 

Asymmetric encryption involves the use of multiple keys for data encryption and 

decryption. To be exact, the asymmetric encryption method comprises two 

encryption keys that are mathematically related to each other. These keys are known 

as the public key and private key. As a result, the asymmetric encryption method is 

also known as “public key cryptography”.  

In communication between Alice and Bob, Alice uses the public key Ke of Bob to 

encrypt the message, in a way that only B (neither A) can decrypt this message using 

his private key Kd. This system is also used to sign a message digitally. Rivest-

Shamir-Adleman (RSA) is widely used asymmetric key algorithm for decades and 

Elliptic Curve Cryptography (ECC) as an alternative to RSA which offers highest 

security with small bit length of key. 
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CHAPTER 4 

ADVANCED ENCRYPTION STANDARD 

DES was deprecated in 2002 as it was proved insecure. This is mainly due to its 

smaller 56-bit key size. DES Keys can be broken in 56 hours using the EFF DES 

cracker - Deep Crack. The algorithm is believed to be practically secure in the form 

of Triple DES (3DES), although there are theoretical attacks. In recent years, the 

cipher has been superseded by the Advanced Encryption Standard (AES). 

The Advanced Encryption Standard (AES) specifies a FIPS-approved cryptographic 

algorithm that can be used to protect electronic data. The AES algorithm is a 

symmetric block cipher that can encrypt (encipher) and decrypt (decipher) 

information. The AES algorithm is capable of using cryptographic keys of 128, 192, 

and 256 bits to encrypt and decrypt data in blocks of 128 bits. 

In January 1997, the National Institute of Standards and Technology (NIST) 

announced the initiation of an effort to develop the AES and made a formal call for 

algorithms on September 12, 1997. After reviewed the results of this Preliminary 

research, the algorithms MARS, RC6TM, Rijndael, Serpent and Two fish were 

selected as finalist. And further reviewed public analysis of the finalist, NIST has 

decided to propose Rijndael as the new Advanced Encryption Standard (AES) on 

2nd October 2000. It was adopted by the U.S. government in 2001. In the summer 

of 2001, AES replaced the aging DES as the Federal Information Processing 

Standard (FIPS). It is also the standard for block cipher in ISO/IEC 18033-3. DES 

is seen as reaching the end of its life, as cracking of its cipher is seen to be more 

tractable on current computer hardware. The AES algorithm will be used for many 

applications within the government an in the private sector. 
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AES is a subset of the Rijndael block cipher developed by two Belgian 

cryptographers, Vincent Rijmen and Joan Daemen, who submitted a proposal to 

NIST during the AES selection process. Rijndael is a family of ciphers with different 

key and block sizes. For AES, NIST selected three members of the Rijndael family, 

each with a block size of 128 bits, but three different key lengths: 128, 192 and 256 

bits. 

 

4.1 MATHEMATICS INVOLVED 

This section provides a brief introduction to the fundamental mathematical concepts 

of finite fields needed to understand. Several operations in AES are defined at byte 

level, with bytes representing elements in the finite field gf(28). Other operations are 

defined in terms of 4-byte words. 

 

4.1.1 GALOIS FIELD 

The elements of Galois Field gf(pn) is defined as 

gf(pn) = (0, 1, 2, . . . , p − 1) ∪ 

(p, p + 1, p + 2, . . . , p + p − 1) ∪ 

(p2, p2 + 1, p2 + 2, . . . , p2 + p − 1) ∪ . . . ∪ 

(pn−1, pn−1 + 1, pn−1 + 2, . . . , pn−1 + p − 1) 

where p ∈ P and n ∈ Z+. The order of the field is given by pn while p is 

called the characteristic of the field. On the other hand, gf, as one may have 

guessed it, stands for Galois Field. Also note that the degree of polynomial 
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of each element is at most n − 1. 

 

4.1.2 28 GALOIS FIELD TRANSFORMATION 

The byte value in AES is represented as a set of bits (0 or 1) and is represented as 

the collection of bits separated by comma as {b7, b6, b5, b4, b3, b2, b1, b0}. These 

bytes are interpreted as finite field elements using polynomial representation as 

b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x + b0 

Example: 

The byte with hexadecimal value '85' (binary 01010101) corresponds with 

polynomial 

x6 + x4 + x2 + 1 

 

4.1.3 FINITE FIELD ADDITION AND SUBTRACTION 

An addition in Galois Field is pretty straightforward. Suppose f(p) and g(p) 

are polynomials in gf(pn). Let A = an−1an−2 . . . a1a0, B = bn−1bn−2 . . . b1b0, 

and C = cn−1cn−2 . . . c1c0 be the coefficients of f(p), g(p), and h(p) = f(p) + 

g(p) respectively. If ak, bk, and ck are the coefficients of pk in f(p), g(p), and h(p) 

respectively then 

ck = ak + bk (mod p) 

Similarly, if h(p) = f(p) - g(p) then 

ck = ak - bk (mod p) 
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where 0 ≤ k ≤ n − 1. Since computer works in gf(28), if ak and bk refer to the kth bit 

in the bytes we wish to add then ck, the kth bit in the resulting byte, is given by 

ck = ak + bk (mod 2) 

Since 0 + 1 = 1 + 0 = 1 (mod 2) = 1 and 0 + 0 = 0 (mod 2) = 1 + 1 = 

2 (mod 2) = 0, we may think of addition as exclusive-or operation which is 

also known as XOR operation. That is, XOR operation returns 0 if both 

entries are equal and returns 1 otherwise which also means that subtraction 

and addition is the same in Galois Field whose characteristic field is 2. Due 

to the nature of Galois Field, addition and subtraction of two bytes will not 

go any bigger than 11111111 = 255, the biggest value one byte can store, 

and is therefore a safe operation. 

Example: 

Suppose we are working in gf(28), then 83 + 249 is 

83 + 249 = (26 + 24 + 21 + 20) + (27 + 26 + 25 + 24 + 23 + 20) 

     = 27 + 2 · 26 + 25 + 2 · 24 + 23 + 21 + 2 · 20 

     = 27 + 25 + 23 + 21 

     = 169 
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Alternatively, from binary numeral system perspective, 

83 + 249 = 01010011 + 11111001 

     = 10101010 

     = 169 

and the results coincide. 

 

4.1.4 FINITE FIELD MULTIPLICATION AND MULTIPLICATIVE 

INVERSE 

Multiplication in Galois Field, however, requires more tedious work. Suppose f(p) 

and g(p) are polynomials in gf(pn) and let m(p) be an irreducible polynomial (or a 

polynomial that cannot be factored) of degree at least n in gf(pn). We want m(p) to 

be a polynomial of degree at least n so that the product of two f(p) and g(p) does not 

exceed 11111111 = 255 as the product needs to be stored as a byte. If h(p) denotes 

the resulting product then 

h(p) = (f(p) · g(p)) (mod m(p)) 

On the other hand, the multiplicative inverse of f(p) is given by a(p) such that 

(f(p) · a(p)) (mod m(p)) = 1 

Note that figuring out the product of two polynomials and the multiplicative inverse 

of a polynomial requires both reducing coefficients modulo p and reducing 

polynomials modulo m(p). The reduced polynomial can be calculated easily with 

long division while the best way to compute the multiplicative inverse is by using 

Extended Euclidean Algorithm. 
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Example: 

{53} • {CA} 

(x6 + x4 + x + 1) • (x7 + x6 + x3 + x) = 

(x13 + x12 + x9 + x7) + (x11 + x10 + x7 + x5) + (x8 + x7 + x4 + x2) + (x7 + x6 + x3 + x)  

= x13 + x12 + x11 + x10 + x9 + x8 + x6 + x5 + x4 + x3 + x2 + x 

and 

(x13 + x12 + x11 + x10 + x9 + x8 + x6 + x5 + x4 + x3 + x2 + x) % (x8 + x4 + x3 + x + 1)  

= (11111101111110 mod 100011011) 

= {3F7E mod 11B} 

= {01} = 1 (decimal),  

which can be demonstrated through long division (shown using binary notation, 

since it lends itself well to the task. Notice that exclusive OR is applied in the 

example and not arithmetic subtraction, as one might use in grade-school long 

division. 
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11111101111110 (mod) 100011011 

^100011011  

  1110000011110 

  ^100011011 

    110110101110 

    ^100011011 

      10101110110 

      ^100011011 

        0100011010 

        ^100011011 

          00000001 

(The elements {53} and {CA} are multiplicative inverses of one another since their 

product is 1.) 

 

4.2 THE STATE 

AES breaks data into states or matrix of bytes of pre-determined size and encrypt 

every state independently of each other. Putting together bytes into a state has no 

cryptographic significance, yet it is an important process without whom other 

operations cannot be conducted. In Rijndael with a 128-bit key, an array or a matrix 

with 4 rows and 4 columns is formed where each entry is a byte or 8 bits so that there 

are essentially 16 bytes in total. Additionally, we may also think of a 128-bit state 

space as a vector in gf(28)16 where each component of the vector is a byte. 
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Fig. 4.1 State Matrix 

 

4.2.1 THE STATE AS AN ARRAY OF COLUMNS 

The four bytes in each column of the State array form 32-bit words. The state can 

hence be interpreted as a one-dimensional array of 32-bit words (columns) w0, w1, 

w2 and w3.  

w0 = s00 s10 s20 s30 

w1 = s01 s11 s21 s31 

w2 = s02 s12 s22 s32 

w3 = s03 s13 s23 s33 
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4.3 STEPS INVOLVED IN AES ALGORITHM 

 

Fig. 4.2 AES General Structure 

 

1)      Key Expansions — round keys are derived from the cipher key using 

Rijndael's key schedule. AES requires a separate 128-bit round key block for each 

round plus one more. 
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2) Initial Round 

AddRoundKey—each byte of the state is combined with a block of the 

round key using bitwise XOR. 

3) Rounds 

a) SubBytes 

b) ShiftRows 

c) MixColumns 

d) AddRoundKey 

  

4) Final Round 

a) SubBytes 

b) ShiftRows 

c) AddRoundKey 
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4.3.1 SUBBYTES (SUBSTITUTE BYTES) 

In this method each byte, each element in the matrix is replaced using the Rijndael’s 

S-Box (Substitution Box). Each byte is replaced with its multiplicative inverse. 

 

Fig. 4.3 S-Box 
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Fig. 4.4 SubBytes Transformation 

 

For inverting the SubBytes operation while decrypting, substitute the bytes in the 

state matrix using the following s-box(inverse s-box). 
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Fig. 4.5 Inverse S-Box 

 

 

4.3.2 SHIFT ROWS 

ShiftRows is perhaps the simplest operation to scramble data. Like the name suggest, 

ShiftRows shifts row n to the left by n−1 unit, so that the first row remains unchanged 

while the second row is shifted to the left by 1, third row by 2, and fourth row by 3. 
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That is, if we let S and S’ to denote the state before and after performing ShiftRows 

then if S’ is given by 

 

Fig. 4.6 Shift Rows Transformation 

 

For inverting the operation, the same sequence of operations is performed but the 

shifting is done to the right. 
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Fig. 4.7 Inverse Shift Rows Transformation 

 

 

4.3.3 MIX COLUMNS 

The next method messes with columns instead of rows. MixColumns takes each 

column in the state and perform linear transformation on it. Since each column has 

4 rows, the matrix transformation has to be 4 × 4 and is defined as follow 

 

Fig. 4.8 Mix Columns Matrix 
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And since linear transformation has an inverse, this operation is invertible. The 

matrix used to revert the state back to its original standing is given by 

 

Fig. 4.9 Inverse Mix Columns Matrix 

  

Fig. 4.10 Mix Columns Transformation 
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4.3.4 ADD ROUND KEY 

AddRoundKey is the most important stage as it is the stage that provides uniqueness 

to the encryption thus is inevitably a complex operation by itself. The output of 

AddRoundKey fully depends on the key or the password specified by the user. In 

this stage a subkey, which is the same size as the state, is computed from the main 

key using Rijndael’s Key Schedule. Once a subkey is derived, the sum of the subkey 

and the state is calculated.  

 

Fig. 4.11 Add Round Key Transformation 
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4.3.5 KEY EXPANSION 

This process consists of three parts: Rotate, RCon or RC (Round Constant), and 

SubByes. The first part is to rotate or to shift the bytes that form the keyword 8 bits 

to the left, which is similar to what happens to the second row in ShiftRows. The 

second part is to apply sub-operation called RCon; And the third part is to perform 

Rijndael’s S-Box whose details have been dissected in SubBytes. Next step in this 

operation is to expand the main key until we have enough subkeys. 

 

Fig. 4.12 Block Diagram of Key Expansion 
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Fig. 4.13 Functional Representation of Key Expansion 

 

Fig. 4.14 RCon/RC for 10 rounds 
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4.4 SPECIFICATIONS OF AES 

• The length of the input block, the output block and the State is always 128 

bits.  

• The length of the Cipher Key can be either 128, 192, or 256 bits. 

• The number of rounds to be performed during the execution of the algorithm 

is dependent on the key size. 

Length of Key (bits) Number of Rounds 

128 10 

192 12 

256 14 

Table 4.1 AES Relation Between Key Length and Number of Rounds 

 

4.5 CRYPTANALYSIS RESULTS OF AES 

In AES, there are 3.4 x 1038 possible 128-bit keys and 1.1 x 1077 possible 256-bit 

keys. Pure brute forcing would take billions of years to crack the smaller 128-bit key. 

No one can be sure how long the AES - or any other cryptographic algorithm - will 

remain secure. However, according to NIST’s estimates AES should serve at least 30 

years without any changes in the algorithm. 

The computational complexity of cracking an AES-128 key using the Biclique attack 

is 2126.18 using publicly known attacks while it is 2254.4 for AES-256. This attack is a 

variant of the meet-in-the-middle (MITM) method of cryptanalysis. It uses a biclique 

structure. 
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4.6 AES ENCRYPTION (ROUND BY ROUND) 

 

Fig. 4.15 AES Encryption Block Diagram 

 



33 
 

The following figures show the values in the state matrix as the cipher progresses 

for a key length of 128 bits. The columns from 1 to 5 show the results of 

AddRoundKey, SubBytes, ShiftRows, MixColumns and the Round Key itself 

respectively. 
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Fig. 4.16 AES-128 Encryption Example 

 

* The above image was captured from Rijndael-Inspector-v1.1. 

 

 



35 
 

4.7 AES DECRYPTION (ROUND BY ROUND) 

 

Fig. 4.17 AES Decryption as an inverse of Encryption 

 

The following figures show the values in the state matrix as the decryption 

progresses for a key length of 128 bits. The columns from 1 to 5 show the results of 

InvSubBytes, InvShiftRows, InvMixColumns, Round Key itself and the result of 

AddRoundKey respectively. 
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Fig 4.18 AES-128 Decryption Example 

 

* The above image was captured from Rijndael-Inspector-v1.1. 
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CHAPTER 5 

IMPLEMENTATION 

Both the variants 128-bit and the 256-bit were implemented in hardware, Xilinx 

xc7z020-clg484-1 FPGA using the Xilinx Vivado 2019.1 software. Verilog was 

used for programming. The design implemented handles both encryption and 

decryption. It tries to balance resource utilization and performance. 

Features of Implementation: 

• All keys are generated at the beginning of the encryption process. 

• SubBytes and ShiftRows transformations were combined into a single 

transformation to improve performance (same with InvSubBytes and 

InvShiftRows). 

• Standard NIST testcases were used for testing. 

• Loop unrolling optimization was used. 

The FPGA was contained in the Zedboard Zynq Evaluation and Development Kit 

which contains the Zynq-7000 SoC. The SoC has 512 MB DDR3 RAM. 

The Specification is the FPGA is given in table 5.1. 

Resource Available 

LUT 53200 

FF 106400 

BRAM 140 

IO 200 

BUFG 32 

 

Table 5.1 xc7z020-clg484-1 FPGA Specifications 
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Zedboard, with its IOs marked, is pictured in Fig. 5.1 and its block diagram in Fig. 

5.2. The SoC has a clock speed of 100MHz. 

 

Fig. 5.1 Zedboard 
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Fig. 5.2 Zedboard Block Diagram 

 

 

All the testcases used are pictured in Fig. 5.3. 
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Fig. 5.3 Testcases 
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5.1 AES-128 RESULTS 

 

 

Fig. 5.4 AES-128 Waveform 

 

 

Fig. 5.5 AES-128 implemented in Hardware 
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The working of AES-128 design can be seen from the figures 5.4 and 5.5. The 

waveform displays clock, key for cipher, inputs and outputs for both encryption and 

decryption. The outputs are produced as the clock progresses. The values displayed 

correspond to the first test case of AES-128, shown in Fig. 5.3. In hardware, the first 

4 bits of the ciphertext and decrypted plaintext of the first testcase displayed using 

the 8 Red LEDs can be seen, i.e. 0x36 or 00110110. 

 

 

Fig. 5.6 Performance of AES-128 Design 

 

The performance of the AES-128 design in terms of clock cycles is shown in Fig. 

5.6. The key expansion stage has to generate 10 keys and each generation took 

exactly 1 clock cycle to output its corresponding round key. During encryption, the 

MixColumns transformation takes 1 clock cycle and as the SubBytes and the 

ShiftRows are combined, they together take 1 clock cycle to complete (same during 

decryption as InvSubBytes and InvShiftRows are combined). So, encryption and 

decryption rounds take 2 clock cycles each. The actual encryption process 

(excluding the key expansion phase) proceeds as soon as the first round key is 

generated and finishes at 19 clock cycles. The actual decryption process can only 

start after the last key is generated i.e. after 10 clock cycles and thus, taking 10 more 

clock cycles than the encryption process and finishing at 29 clock cycles. 
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Fig. 5.7 Resource Utilization of AES-128 Design in Hardware 

 

The resource utilization of the design is shown in Fig. 5.7 (captured in Vivado 

2019.1). One clock source is used. 3854 (7.24%) Look Up Tables, 1691 (1.59%) 

Flip Flops and 70.5 (50.36%) Block RAM of the FPGA have been consumed. 

 

5.2 AES-256 RESULTS 

 

 

Fig. 5.8 AES-256 Waveform 
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Fig. 5.9 AES-256 implemented in Hardware 

 

The working of AES-256 design can be seen from the figures 5.8 and 5.9. The values 

displayed correspond to the first test case of AES-256, shown in Fig. 5.3. In 

hardware, the first 4 bits of the ciphertext and decrypted plaintext of the first testcase 

displayed using the 8 Red LEDs can be seen, i.e. 0xF6 or 11110110. 

 

 

Fig. 5.10 Performance of AES-256 Design 
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The performance of the AES-256 design in terms of clock cycles is shown in Fig. 

5.10. The key expansion stage has to generate 13 keys and each generation took 

exactly 1 clock cycle to output its round key. Encryption and decryption rounds take 

2 clock cycles each as described for AES-128 design. The actual encryption process 

(excluding the key expansion phase) proceeds as soon as the first round key is 

generated and finishes at 27 clock cycles. The actual decryption process can only 

start after the last key is generated i.e. after 13 clock cycles and thus, taking 10 more 

clock cycles than the encryption process and finishing at 40 clock cycles. 

 

 

Fig. 5.11 Resource Utilization of AES-256 Design in Hardware 

 

The resource utilization of the design is shown in Fig. 5.11 (captured in Vivado 

2019.1). One clock source is used. 4544 (8.54%) Look Up Tables, 1595 (1.50%) 

Flip Flops and 70.5 (50.36%) Block RAM of the FPGA have been consumed. 
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CHAPTER 6 

CONCLUSION & FUTURE SCOPE 

6.1 CONCLUSION 

As seen from the implementation results, we were successfully able to generate the 

performance metrics. The following details can be observed from the results. 

• Decryption takes extra clock cycles than encryption (to be precise, it is the 

number of clock cycles taken for key expansion) because the last round key 

is required for the process to start. 

• The number of clock cycles required scaled linearly as only 4 extra rounds 

were needed for AES-256 which takes 2 clock cycles per round. 

• The BRAM usage stayed the same for both versions. 

• Nearly 18% more LUTs and 5.6% less Flip Flops were required for the 

implementation of AES-256 than AES-128. 

 

From the results of the cryptanalysis in section 4.4, it can be said that the cracking 

of AES-256 is computationally nearly 2128 times more complex than AES-128. The 

former offers exponentially higher encryption security and considering the 

improvement, the increase in the required resources seems less significant. 

 

6.2 FUTURE SCOPE 

How long a cipher will be secure cannot be said certainly, as newer attacks on 

existing algorithms are being researched every day. It is only possible to give a 

loose estimate. AES is expected to secure communications at least until 2030 

without any modifications in its existing structure. It is being used to secure 
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communications in various applications such as banking, satellite communication, 

defense applications, government documents, confidential corporate documents, 

personal storage devices and wireless networks (Wi-Fi, Zigbee, Wibree). As 

technology matures, the designs can be made to execute quicker with reduced area 

and resource consumption. 

NIST is taking initiatives to develop newer and better standards of encryption as the 

importance of privacy is growing day by day. As a result, researchers are developing 

never algorithms and are tested rigorously. A few examples of such algorithms are 

Anubis, Grand Cru and Kalyna. None of them have provided any significant 

advantage over Rijndael algorithm. So, it remains as the standard. 

Newer attacks are also researched intensely. It is better to find the vulnerability and 

patch it before the knowledge reaches the wrong hands. So, all security algorithms 

have to be tested for, against attacks on all platforms regularly so that the principle 

of confidentiality is not breached.  
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