
i

 LOAD BALANCING IN CLOUD COMPUTING

USING CLOUD SIMULATOR

A PROJECT REPORT

 Submitted by

R. BHUVANESHWARI (715517104018)

M.VARSHINI (715517104058)

in partial fulfillment for the award of the degree

of

BACHELOR OF ENGINEERING

IN

COMPUTER SCIENCE AND ENGINEERING

PSG INSTITUTE OF TECHNOLOGY AND APPLIED RESEARCH,

COIMBATORE-641062.

ANNA UNIVERSITY: CHENNAI 600 025

JUNE 2021

ii

ANNA UNIVERSITY: CHENNAI 600 025

BONAFIDE CERTIFICATE

Certified that this project report “LOAD BALANCING IN CLOUD

COMPUTING USING CLOUD SIMULATOR” is the bonafide work of “R.

BHUVANESHWARI (715517104018), M. VARSHINI (715517104058)” who

carried work under my supervision.

---------------------------- ------------------------

SIGNATURE SIGNATURE

Dr. R. Manimegalai Ms. P. Priya Ponnusamy

HEAD OF THE DEPARTMENT SUPERVISOR

Computer Science and Engineering Assistant Professor

PSG Institute of Technology and (Selection Grade)

Applied Research, Computer Science and Engineering

Coimbatore-641 062. PSG Institute of Technology and

 Applied Research,

Coimbatore- 641062.

Submitted for the project viva-voce Examination held on ______________.

----------------------------------- ----------------------------------

INTERNAL EXAMINER EXTERNAL EXAMINER

iii

ACKNOWLEDGEMENT

We express our deep sense of gratitude to our Managing Trustee Shri L.

Gopalakrishnan for his invaluable guidance and blessing in the project.

We are very grateful to Dr. G. Chandramohan, Principal and professor

for providing us with an environment to complete our project successfully.

We also take privilege for expressing my gratitude to Dr. P.V.

Mohanram, Secretary and professor in extending his support to carry out my

study.

We are greatly indebted to Dr. R. Manimegalai, Head of the

Department, Computer Science and Engineering for her guidance which was

instrumental in the completion of my project.

We are very grateful to Ms. P. Priya Ponnusamy, our Project guide for

her constant encouragement and support throughout my course.

 We express our sincere thanks to our project coordinator, Mr. S.

Thivaharan, for his constant encouragement and support throughout my course.

Finally, we take this opportunity to extend our deepest appreciation to our

family and friends, who supported us to complete our project during the crucial

times.

 R. BHUVANESHWARI

 M.VARSHINI

iv

PLAGARISM REPORT

v

ABSTRACT

The subsequent era of computing is Cloud computing. Nowadays, it is

helpful in public as well as private organizations. Cloud computing is a set of

servers that service the needs of clients from multiple locations.

Cloud can store a huge amount of client requests with the help of

datacentres. A wide range of tools, virtualization options, and an integrated

production platform are offered by cloud infrastructure. Cloud computing allows

users to use a large range of computational tools.

With the number of internet users, it is impossible to fulfill all the user

demands. This issue can be solved with optimal load balancing with the cloud

service provider. Load balancing plays a major component in Cloud Computing.

Load balancing prevents overcrowding. It is a technique of distributing

workload through several VMs. The VMs are present in the server over the

network. It is used to utilize the resource effectively. It also reduces data transfer

time and average response time.

The suggested algorithm aims to uniformly spread the load over all servers

in a cloud network. The suggested algorithm is then optimized and the results are

less than the suggested algorithm. Response time and data processing time have

been reduced using the proposed methods which is better than the existing

systems.

vi

LIST OF TABLES

TABLE NO. TITLE PAGE NO.

5.1 Assumption of regions 32

5.2 UserBase parameters 33

vii

LIST OF ABBREVIATIONS

ABBREVIATION EXPANSION

DC Datacentre

ESCE Equally Spread Current Execution

IaaS Infrastructure As A Service

ICT Information and Communication Technology

IDE Integrated Development Environment

PaaS Platform As A Service

R Region

RR Round Robin

RTT Round-Trip Time

SaaS Software As A Service

VM Virtual Machine

VMM Virtual Machine Manager

viii

LIST OF FIGURES

FIGURE

No.

TITLE PAGE

No

2.1 Components of cloud computing 5

2.2 Cloud computing architecture 6

2.3 Cloud service models 7

2.4 Software as a Service (SaaS) 8

2.5 Platform as a Service (PaaS) 8

2.6 Infrastructure as a Service (IaaS) 9

2.7 Cloud deployment models 10

2.8 Virtualization 10

2.9 Load balancing in cloud computing 11

2.10 Hierarchy and assignment of cloud components 12

2.11 Execution of load balancing algorithm 13

2.12 Load balancing metrics in cloud computing 14

4.1 Types of load balancing algorithms 20

4.2 Static load balancer 21

4.3 Round robin algorithm 21

4.4 CLBDM load balancing algorithm 22

4.5 Dynamic load balancer 23

4.6 Throttled load balancing algorithm 24

4.7 Flowchart of hash ESCE algorithm 27

4.8 Flowchart of optimized algorithm 29

5.1 Architecture of cloudsim 31

ix

5.2 Components of cloud analyst 32

5.3 DatacenterController code snippet 35

5.4 Constants.java code snippet 35

5.5 Code snippet of configuration simulation panel 36

5.6 Implementation of hash ESCE algorithm in data centre 37

5.7 Implementation of optimized algorithm in datacentre 37

6.1 Cloud analyst workspace 38

6.2 Overall time summary of ESCE algorithm 39

6.3 Overall time summary of round robin algorithm 39

6.4 Overall time summary of throttled algorithm 40

6.5 Simulation of hash ESCE algorithm 40

6.6 Response time summary of hash ESCE algorithm 41

6.7 Datacentre processing time with cost of hash ESCE

algorithm

41

6.8 Simulation of optimized algorithm 42

6.9 Response time summary of optimized algorithm 42

6.10 Datacentre processing time with cost of optimized

algorithm

43

6.11 Comparison of modified algorithm with existing

algorithms with 2 DCs and 3 Userbases

44

6.12 Comparison of modified algorithm with existing

algorithms with 4 DCs and 3 Userbases

45

6.13 Comparison of modified algorithm with existing

algorithms with 4 DCs and 4 Userbases

45

x

TABLE OF CONTENTS

CHAPTER

NO.

TITLE PAGE

NO.

 ACKNOWLEDGEMENT iii

 PLAGARISM REPORT iv

 ABSTRACT v

 LIST OF TABLES vi

 LIST OF ABBREVIATIONS vii

 LIST OF FIGURES viii

1 INTRODUCTION 1

 1.1 HISTORY OF CLOUD COMPUTING 1

 1.2 OBJECTIVE 2

 1.3 CHALLENGES AND MOTIVATION 2

 1.4 PROBLEM STATEMENT 3

 1.5 PROJECT OVERVIEW 3

2 CLOUD COMPUTING AND LOAD BALANCING 4

 2.1 CLOUD COMPUTING 4

 2.2 BENEFITS OF CLOUD COMPUTING 4

 2.3 COMPONENTS OF CLOUD COMPUTING 5

 2.4 CLOUD COMPUTING ARCHITECTURE 6

 2.5 CLOUD SERVICE MODELS 7

 2.6 CLOUD DEPLOYMENT MODELS 9

xi

 2.7 VIRTUALIZATION 10

 2.8 LOAD BALANCING 11

 2.9 GOALS OF LOAD BALANCING 12

 2.10 LOAD BALANCING EXECUTION 12

 2.11 PERFORMANCE METRICS FOR

 LBA EVALUATION

13

3 LITERATURE SURVEY 16

 3.1 EXISTING SYSTEMS 16

 3.2 DRAWBACKS IN THE EXISTING

 SYSTEMS

19

4 PROPOSED METHODOLOGY 20

 4.1 LOAD BALANCING ALGORITHMS 20

 4.1.1 STATIC LOAD BALANCING TECHNIQUES 21

 4.1.2 DYNAMIC LOAD BALANCING

 TECHNIQUES

22

 4.2 STEPS FOR IMPLEMENTATION 24

 4.3 DESCRIPTION OF HASH ESCE 25

 4.4 HASH ESCE ALGORITHM 26

 4.5 DESCRIPTION OF OPTIMIZED ALGORITHM 27

 4.6 OPTIMIZED ALGORITHM 28

 4.5 ADVANTAGES OF PROPOSED ALGORITHMS 29

xii

5 SYSTEM DESIGN AND IMPLEMENTATION 30

 5.1 TECHNOLOGIES USED 30

 5.1.1 JAVA 30

 5.1.2 CLOUDSIM 30

 5.1.3 CLOUD ANALYST 31

 5.2 SYSTEM REQUIREMENTS 32

 5.2.1 ASSUMPTION OF REGION 32

 5.2.2 USERBASE CONFIGURATION 33

 5.2.3 DATACENTER CONFIGURATION 33

 5.3 COMPONENTS OF CLOUD ANALYST 34

 5.4 SYSTEM IMPLEMENTATION 34

6 RESULTS AND COMPARISON 38

 6.1 CLOUD ANALYST WORKSPACE 38

 6.2 SIMULATION OF EXISTING ALGORITHMS 39

 6.3 SIMULATION OF PROPOSED ALGORITHMS 40

 6.4 COMPARISON OF PROPOSED ALGORITHMS

 WITH EXISTING ALGORITHMS

43

7 CONCLUSION AND FUTURE WORK 46

 7.1 CONCLUSION 46

 7.2 FUTURE WORK 47

 APPENDIX 48

 REFERENCES 65

1

CHAPTER 1

INTRODUCTION

1.1 HISTORY OF CLOUD COMPUTING

Cloud computing has improved its existing technologies in the context of

the services they provide. Grid computing which is a distributed computing was

not flexible when compared to cloud computing. Various attractive features have

resulted in the increment of cloud computing. The Pay-as-you-go model is

followed by Cloud Computing. On-demand provisioning of the resources is

provided by Cloud Computing.

The rising standards have increased the demand for cloud computing

within the field of business where infrastructure is high. Using cloud technology,

one can have runtime environments, infrastructure, and services. Users from the

different domains can make better advantage of cloud computing as per their

needs. The main entity is that the cloud provider which enables the users to use

different services as per their needs. They provide purchasers with many

resources like network, storage capacity which may be joined with any

registration process where any user who is authenticated can work and request

services of the cloud.

Among the varied different tasks of providers of cloud services, the crucial

one is to assign nodes for requests of users. The above task needs to be more

efficient. To perform this, the total time interval should be less [26] as possible

whereas in parallel various other problems with network delays and heterogeneity

got to be managed. Cloud computing is popular within the field of Information

and Communication Technology (ICT).

2

Rapid increment in the cloud requests, providers got to build more

capabilities in the components which may be performed by increasing their count

or power or both. This example may become an outsized network consisting of

cloud users, nodes, tasks and Virtual Machines (VMs). As the network size

becomes large, workload also got to be managed to increase overall performance.

This area of load balancing aims at the increased detection rate and the

distribution of work in the network.

1.2 OBJECTIVE

The major objective is to generate an effective mechanism for load

balancing, which may be a benefit for both the service providers also as a cloud

user. Proper distribution of the load among prevailing nodes in the network are

going to be the simplest thanks to utilize the resources and to process the requests

of user. This task of load balancing is often performed by scheduling of tasks into

VM then from VM to nodes existing in system. An effective algorithm for Load

balancing will get high rate of fault tolerance.

1.3 CHALLENGES AND MOTIVATION

Cloud computing is earning more attention from the users as it is the

scalable, elastic, easily accessible, and least delivery of services. These features

contribute in making it marketable. This model may set a replacement world to

cloud computing where every user can run its services as per requirements. The

working of the interior process is well known by cloud computing.

The overall work of the complete procedure of cloud computing is directly

proportional to the number of users accessing the services. It is a challenging task

to manage the resources like memory, CPU and secondary storage. This three are

3

the prerequisite of the cloud service to provide load balancing in an effective

manner. Traffic will also rise exponentially.

1.4 PROBLEM STATEMENT

Cloud is an active environment. The load balancing algorithm plays an

important role in distributing the request of the client to the VMs. Existing

algorithms are very complex in nature, static, cost inefficient, less throughput and

it takes more time for responding to the VM and processing the request. There is

a need to find a new load balancing algorithm which is more efficient in cost and

also in time.

1.5 PROJECT OVERVIEW

There are many current load balancing algorithms. Some of them are

❖ Round Robin Load Balancing Algorithm

❖ Equally Spaced Current Execution (ESCE) Load Balancing

Algorithm

❖ Throttled Load Balancing Algorithm

The proposed algorithm extends the benefits of ESCE and also

dynamically allocate the requests to the VMs and also it is time efficient. After

implementing the algorithm, the datacentre processing time and response time is

compared with the existing algorithms. The comparison of the algorithms with

different userbases and different datacentres were plotted on the graph.

4

CHAPTER 2

CLOUD COMPUTING AND LOAD BALANCING

2.1 CLOUD COMPUTING

Cloud Computing has been described in variety of methods with the aid of

several researchers. The meanings of cloud computing are given based on their

own interpretations. The below mentioned two are most known definitions:

❖ NIST

Cloud Computing is model for enabling convenient, on-demand

network access to the shared pool of the configurable computing resources.

For Example, Servers, Networks, Services and Storage which should be

provisioned and released with the minimal management effort or a service

provider interaction [40].

❖ Foster

A large-scale distributed computing paradigm that’s driven by

economic scale, during which pool of abstracted virtualized, storage,

dynamically-scalable, platforms, managed computing power and services

are delivered to external customers on demand over Internet [41].

2.2 BENEFITS OF CLOUD

The expenses at the initial and recurring are lower than traditional

computing. Cost is reduced. Massive infrastructure is offered by cloud providers

to us. A large amount of data can be stored and maintained. Sudden workloads

are also managed effectively. It can also be flexible. It additionally continues

machine stability.

5

2.3 COMPONENTS OF CLOUD COMPUTING

Components of cloud work as the integrated unit which comprises of

datacentres, servers and clients. The Figure 2.1 describes the cloud components.

Figure 2.1 Components of cloud computing

Each component works specific role demanded by user. They

communicate in overall network according to requirements.

❖ Clients

Computers use in our life are included in clients. It consists of

desktop computer, mobile phone, tablet. The clients gain access to use

cloud services through internet.

❖ Data Centres

The most core element of entire cloud process. It consists of many

nodes in the room. Service providers takes care of Configuration.

❖ Distributed Servers

These servers are called as nodes. It need not fit in same location as

user. Distributed Servers helps in increment of the fault tolerance rate.

6

2.4 CLOUD COMPUTING ARCHITECTURE

 Cloud computing supports IT service which will be consumed as a utility

and delivered through a network. It is possible to organize each concrete

realizations of cloud computing into a layered view. It covers the entire stack

from hardware appliances to software systems.

 The whole architecture can be understood by studying separately each

layer in architecture. The layers are restricted to work for specific tasks. The

Figure 2.2 depicts the layered architecture of cloud computing with several layers.

Figure 2.2 Cloud computing architecture

7

2.5 CLOUD SERVICE MODELS

Once cloud is developed and ready to be used by the customers, it should

be deployed. As shown in the Figure 2.3, a service can be delivered to the cloud

users through Software, Platform and Infrastructure.

Figure 2.3 Cloud service models

The cloud provider models are of three types. They are

❖ Software as A Service (SaaS)

SaaS is software delivery model. It facilitates the user with

variety of applications like social networking. The Figure 2.4 depicts

the working of SaaS. Facebook, NetSuite and Google Docs are

examples of SaaS.

8

Figure 2.4 Software As A Service

❖ Platform as A Service (PaaS)

PaaS provides facility to the users for developing their own

applications. It also provides a generalized development

environment like on demand security and scalability. The Figure 2.5

depicts the PaaS. Examples of PaaS are Google App Engine and

Windows Azure.

Figure 2.5 Platform As A Service

9

❖ Infrastructure as A Service (IaaS)

IaaS or Hardware as a Service (HaaS) offers facilities to users

like customizing infrastructure as per the requirements. It can

process huge amount of data over a huge network. Working of the

IaaS in the cloud environment is shown in the Figure 2.6. Users can

deploy and run any software. Examples of IaaS are Amazon and Go

Grid.

Figure 2.6 Infrastructure As A Service

2.6 CLOUD DEPLOYMENT MODELS

Deployment models outline the kind of right to entry to the cloud. There

are four deployment models. They are

❖ Community Cloud

❖ Public Cloud

❖ Private Cloud and

❖ Hybrid Cloud

10

There are a number of cloud consumers who want the infrastructure of

different sizes. It identifies boundary within which cloud computing services are

implemented. It also provides hint on underlying infrastructure adopted to support

such qualifies and services them. Cloud deployment models are depicted in the

Figure 2.7.

Figure 2.7 Cloud deployment models

2.7 VIRTUALIZATION

Virtualization is a technique that permits sharing single physical instance

of an application or resource among multiple organizations or tenants that is

customers. The basic virtualization of the VM in the cloud computing has been

displayed in the Figure 2.8.

Figure 2.8 Virtualization

11

There are three styles of virtualization. They are

❖ Full Virtualization

Primary hardware is absolutely simulated in the complete

virtualization. Guest software program does not require any

modification in software program to run.

❖ Emulation Virtualization

VM simulates the hardware. Guest OS does not require

modification.

❖ Para- Virtualization

Hardware isn’t always simulated through the VM. Guest Software

runs their very own isolated domains.

2.8 LOAD BALANCING

Load balancing [39] is an essential characteristic in cloud computing. It is

a way of distributing workloads to multiple resources across one or more servers.

It reduces the cost and increases the flexibility of the load. It ensures maximum

throughput in minimum response time. The basic way in which the load balancing

in cloud computing occurs is shown in the Figure 2.9.

Figure 2.9 Load balancing in cloud computing

12

2.9 GOALS OF LOAD BALANCING

Various organizations like IT and Engineering have own networking

systems and use customized policies for load balancing in their network. They

use global policy for cloud environment and specify technical goals for load

balancers which compliment business goals. It helps to improves the performance

It improve resource utilization. Fault is tolerated by this system.

2.10 LOAD BALANCING EXECUTION

A cloud network consists of various nodes which consist of processing

units and storage units. Every node has many VMs to serve requests and a task is

assigned to any of VM or resource.

Resource is released after completing a task and can be allocated again to

any other request according to some allocation policy. CloudSim [37] can

effectively simulate load balancing or scheduling in cloud environment. Figure

2.10 shows the hierarchy and assignment of cloud computing.

Figure 2.10 Hierarchy and assignment of cloud components

13

Task scheduling and resource provisioning are main mechanism which is

responsible for proper load balancing in cloud. Resource provisioning defines

resource mapping with tasks or with any other network entity. The Figure 2.11

demonstrated the execution of load balancing algorithm in the cloud environment.

Figure 2.11 Execution of load balancing algorithm

2.11 PERFORMANCE METRICS FOR LBA EVALUATION

Load balancing algorithms are measured by many metrics to evaluate the

performance and the working. Those metrics are defined in short in this section.

The Figure 2.12 depicts the load balancing parameters in cloud computing.

14

Figure 2.12 Load balancing metrics in cloud computing

❖ Throughput

This metric is used to calculate the entire range of tasks, whose

finishing touch has been completed successfully. For normal gadget

performance, excessive throughput is needed.

❖ Overhead

Overhead mixed with any load balancing set of rules prefaces the

greater price engaged in imposing the set of rules. Overhead associated

specifies the quantity of overhead involved while completing a load-

balancing algorithm. It covers overhead because of motion of tasks;

inter-method contact and inter processors. It needs to be as little as

possible.

❖ Fault tolerance

Measuring the potential of an algorithm to perform equal load

balancing by chances of any shortcoming. It ought to be pretty faulted.

9%

13%

17%

11%19%

2%
6%

23%

Load balancing metrics

Throughput Migration Time

Makespan Sacalability

Resource Utilization Fault Tolerance

Cost Response Time

15

❖ Migration time

It is defined as, the complete time wanted in migrating the assets or

jobs from one node to another. It must be decreased or minimized.

❖ Response time

Response time may be decided as, the meantime among sending a

request and getting its response. To increase the general performance,

it must be minimized.

❖ Datacentre processing time

It is the time taken for the datacentre for processing the request. To

get higher performance, datacentre processing time should be reduced.

❖ Resource utilization

It is used to guarantee the correct usage of all the ones resources,

which included the complete system. This difficulty should be

optimized to have a green load balancing algorithm.

❖ Scalability

It is the ability to carry out uniform load balancing in a device with

the upward push within the wide variety of nodes, in step with the

requirements. Higher scalability is preferred.

❖ Performance

It is used to analyze how green the gadget is. This must be uplifted

at an affordable cost. For example, decreasing the reaction time though

maintaining the receivable delays.

16

CHAPTER 3

LITERATURE SURVEY

3.1 EXISTING SYSTEM

Cloud Computing is the current advancement in the technology field which

is related to IT industry. In [34] M. A. Bhagyabini et al provided review of the

load balancing techniques. On the basis of system topology and load, the

algorithms are classified. Multiple examples and their implementation and Key

technologies was specified in the paper. Challenges are also mentioned by the

authors in this paper. Nidhi et al [22] mentioned strategies that objectives to lessen

the overhead, reaction time and overall performance in the paper. It also analyzed

parameters governing performance.

Shu-Ching et al [31] combined the functionalities of Load balancing

Minimum-Maximum and Opportunistic Load balancing in order to propose

scheduling algorithm and then it gave improvement to existing Min-Max

algorithm. OLB saved each node busy at the same time as now no longer

regarding the workload within the unique node. OLB assigned responsibilities in

random way to all the available nodes while MCT algorithm assigned

responsibilities to most effective that node which predicted minimal finishing

touch time to different nodes.

Another very important and effective algorithm came into existence by

Che-Lun Hung et al in [7] which was LB3M. Gave the concept to get any resource

of cloud by incorporating Co-operative Scheduling of power. It was a good

replacement to challenges concerned to load balancing keeping into concern

energy efficiency. It incorporated both centralized as well as distributed approach

making the best use of inherent efficiently related to centralized one and energy

efficiency and fault tolerant behavior of distributed method. [13] Percentage of

17

node utilization in PALB is calculated and this percent decided the count of

computed nodes that are kept operated when another one gets shut down

completely. The technique consists of sub areas: Balancing area gave method to

instantiate the VMs based on utilization percentage. Another area which is

Upscale gave method to power on the nodes. Area of Downscale was used to

shutdown the nodes that are idle. It gave promise to decrease consumption of

power and managing the resource availability in parallel.

Raul Calvo et al [27] proposed method to manage image collection of large

amounts in real world techniques. This paper creates service and provide its use

for analysis of images. Various operations on data are stated to work in distributed

area for different sub- images. Now these sub-images will be stored and their

processing is done separately by multiple agents. It deals with the execution of

method in large images in parallel way. Resource scaling and consuming power

are the factors to be dealt with any load balancing method. [35] Improvements

that can be measured are obtained in the cloud environment. Load balancing

techniques should be such that to obtain measurable improvements in the resource

utilization and availability of cloud computing environment.

Alexandro Iosup et al [2] studied the services of cloud and analyzed for

scientific computing. They experimented on workloads of real scientific world of

MTC requests of user. MTC stans for many task computing. They deal with

applications that are loosely coupled which complete tasks as per scientific goals.

Srinivas [31] proposed the algorithm for load balancing algorithm for load

balancing adding fuzzy logic to its computation. It made the use of speed of

processor and incorporated assigned load onto overall load in cloud environment

[17]. Here authors proposed a new logic for dynamic balancing of load in cloud

environment with parameters like disk space and status of VM and then stated

Fuzzy Active Monitoring Load Balancer (FAMLB).

18

Milan E Soklic [18] et al focused his work in the elaboration of the load

balancing techniques. They include static, round robin method, shortest queue in

cloud environment. The result of the experimental analysis is that it states that in

the dynamic environment diffusive load balancing is better and efficient as

compared to static load balancing [3]. Gave a difference between strategies that

exists among various methods and algorithms.

Parallel processing [14] can be seen in a network processor. It comprises

of many on-chip processors which is used to perform operations of packet level.

It assures high throughput by providing fine load balancing to the available

processors. It may also have a disadvantage of high rate of out of order packets.

Scheduling packets is done by ORR which is Ordered Round Robin. The

heterogeneous processor which gives loads need to be handled accurately. The

processor will load which are from the processors are perfectly ordered. Analysis

of the derived expressions and the throughput in the terms of batch size, count

odd processors scheduled and scheduling time.

Jaspreet Kaur elaborated active virtual machine algorithm so as to urge free

and appropriate virtual machine in lesser time. She performed simulation to try

to a comparative study of round robin and to spread execution policies concerned

to load balancing for lesser time and price. Algorithm in [36] added capacity

associated with dynamic balancing method of cloud. Experiments performed by

Zhang Bo was clearly demonstrated that achieved better degree for load balancing

and took lesser time in loading tasks.

Soumya Ray et al [30] researched many algorithms like central queuing

algorithm. The analysis was carried between MIPS vs HOST and MIPS vs VM.

The experiment demonstrated that the response time can be improved in the terms

of number of VMs in Datacentre. In order to handle the random selection-based

load distribution problem, dynamic load balancing algorithm are often

implemented because the future course of labor to gauge various parameters.

19

The author [15] proposed algorithm for load distribution of workloads

among nodes of cloud, by utilization of Ant Colony Optimization. This algorithm

uses the concept of Ant Colony Optimization. Shridhar G. Domanal and G. Ram

Mohana Reddy et al [28] have proposed a local optimized load balancing

approach for distributing incoming job request uniformly among the servers or

virtual machines. Performance of proposed algorithm is analyzed using Cloud

Analyst [5] simulator, further comparison is done with another existing Round

Robin and Throttled Algorithm.

In [32], the authors have analyzed various policies utilized with different

algorithm for load balancing using a tool called Cloud Analyst. Dynamic Round

Robin algorithm [1] is the improvement over static Round Robin algorithm, this

paper is well analyzed and Dynamic Round Robin algorithm with varying

parameters. Ching- Chi Lin et.al [7] have proposed new Dynamic Round Robin

Algorithm energy – aware VM scheduling and consolidations.

3.2 DRAWBACKS IN EXISTING SYSTEMS

Though there are many advantages in the existing algorithms, there are

some disadvantages.

❖ The state of previous allocation of VM is not saved.

❖ Existing loads on resources is not considered

❖ Pre-emption is required.

❖ Some algorithms are static.

❖ Starvation is more. Smaller tasks waits until the larger one completes.

❖ Network overhead occurs.

❖ Complex in nature.

20

CHAPTER 4

PROPOSED METHODOLOGY

4.1 LOAD BALANCING ALGORITHMS

Various load balancing algorithms have been evolved and are in use since

region of distributed computing. Load balancing is based on many factors like

system configure and system topology and old techniques can be used in cloud

computing for improved resource utilization. The Figure 4.1 depicts all types of

load balancing algorithms.

Figure 4.1 Types of load balancing algorithms

Basically, load balancing techniques are classified into two categories

❖ Static load balancing

❖ Dynamic load balancing

21

4.1.1 STATIC LOAD BALANCING TECHNIQUES

Static techniques are easy to define. It is feasible for little and glued request

handling network. Static or deterministic techniques make a system less scalable

and can’t handle changes in nature of tasks. It requires more manual effort for

mapping more users to system resources. The working of Static Load Balancer is

explained in the Figure 4.2.

Figure 4.2 Static load balancer

❖ Round Robin

It handles clients request during a circular manner and each task get

lock on VM till it get completed and serves user tasks on FIFO basis. The

algorithm, where the round robin load balancing algorithm works is

revealed in the Figure 4.3.

Figure 4.3 Round robin algorithm

22

❖ CLBDM (Central Load Balancing Decision Model)

It is an improvement over round robin and also finds out time

duration of session established between client and node. Time Duration can

be defined as execution time taken by task till completion on given VM or

resource. The Figure 4.4 depicts CLBDM load balancing.

Figure 4.4 CLBDM load balancing algorithm

4.1.2 DYNAMIC LOAD BALANCING TECHNIQUES

Dynamic techniques can also be classified in centralized or distributed

topology. All decisions for system resource provisioning or scheduling are

controlled by a master and to a slave means slaves merely serves request

forwarded by master to them and cannot take their own decisions.

Whereas in distributed system, control is distributed in network and more

than one node can handle provisioning or scheduling of resources. The Figure 4.5

displays the process of Dynamic Load Balancer.

23

Figure 4.5 Dynamic load balancer

Commonly used dynamic policies are:

❖ ESCE Policy

It equally spreads execution load to all or any available resources

and maintain record of all resources and number of tasks assigned to each

resource or VM when any new task is received to load balancer it searches

for most underutilized resource or VM.

❖ Throttled Policy

Under this policy, each resource is assigned with only one task at a

time and any other job can be assigned only after completion of previous

task assigned to it. The useful resource lists are maintained through the

Load Balancer.

When a new user task is received job, manager check list and if any

free resource is not found, it keeps task in waiting queue and poll on list to

check VM status. The Figure 4.6 describes about the flowchart of Throttled

load balancing algorithm.

24

Figure 4.6 Throttled load balancing algorithm

4.2 STEPS FOR IMPLEMENTATION

The steps for implementing the Hash ESCE and Optimized algorithm are

as follows.

❖ Creation of Virtual Cloud using JAVA

Virtual Cloud is created by JAVA IDE (Eclipse). GUI is the JAVA

interface. The configuration of cloud runs at the Eclipse. Cloud Analyst

workspace is used to create the cloud.

❖ Configuring the Cloud Environment

Cloud Environment is configured using JAVA by configuring

Bandwidth, Datacentre Configuration and Latency Matrix.

❖ Creation of Datacentres

Processing the requests of the users using different parameters, the

datacentres are created.

25

❖ Creation of User Bases

Sending the request using different parameters to Datacentres

creates the userbase.

❖ Service Broker Policies Implementation

There are three service broker policies. They are

▪ Closest Datacentre (CDC)

▪ Optimize Response Time (ORT) and

▪ Reconfiguring with the dynamic load (RDL).

❖ Implementation of load balancing algorithm

The Hash ESCE algorithm is implemented.

❖ Performance analysis based on overall response time and datacentre

processing time.

4.3 DESCRIPTION OF HASH ESCE ALGORITHM

The proposed algorithm is an extension of ESCE algorithm. It includes the

benefits of ESCE algorithm. The states of VMs are contained in the HashMap.

States of the VMs are BUSY and AVAILABLE.

Load balancer will test for the primary available VM when the datacentre

gets the request. If VMs have status as available then, the request is allocated.

The request within the datacentre is queued, if there may be no available VM.

Then, the Load balancer offers the load to all VMs. Load balancer

maintains an index table and a queue. The index table will contain the range of

VMs. A queue contains the range of requests assigned to the VM. If no VM is

26

presently free then the Load balancer checks for VM with minimum load. Then

the request is allocated to VM.

4.4 HASH ESCE ALGORITHM

HashMap is used to store the VM list and status of each VM. The Load

balancer will take a look at for the status and the available VMs will get allocated.

The process of implementing the Hash ESCE is shown in the following steps.

Step 1 : HashMap initially does not contain any entries.

Step 2 : Then all VMs states are mapped to AVAILABLE which are

in the VM States list.

Step 3 : A new request from the client is sent to the datacenter

controller.

Step 4 : Next allocation of the tasks is done by the Load Balancer

which is asked by the Datacenter controller.

Step 5 : The request is allocated to VM, if the HashMap list size < VM

state list size. Else, the request waits for the VM to get free.

Step 6 : After VM processing the request, the DC controller notifies

the LB to release the VMs.

Step 7 : Load balancer updates the state of the VM in both the lists.

Step 8 : When all VM gets busy and the Hash ESCE check for the VM

with minimum load and the request is assigned to that

machine.

The proposed algorithm is coded in JAVA and the Integrated Development

Environment (IDE) used is Eclipse. The cloud simulator used is Cloud Analyst.

The Cloud Analyst is imported in the Eclipse and the algorithm is

implemented as per the flowchart as shown in the Figure 4.7. Then, the simulation

of the code is run by the IDE. Thus, the simulation page is created.

27

Figure 4.7 Flowchart of hash ESCE algorithm

4.5 DESCRIPTION OF OPTIMIZED ALGORITHM

 The optimized algorithm consists of the HashMap which contains the VMs

and its states and two variables low and high which are used to indicate the limits.

If the count of requests in VM is less than low, then it is added to the lownode

queue. If the count of requests in VM is greater than high, then it is added to

highnode.

28

Initially, all the count of requests in VMs are set to lownode. If VM

requests count is between the limits then the VM with less requests are allocated.

If there are no available VMs within the limit, then the request is allocated to the

VMs in the highnodes.

4.6 OPTIMIZED ALGORITHM

 The optimized algorithm has been coded in JAVA in the Eclipse IDE. The

cloud analyst simulator has been imported in Eclipse and the algorithm

implemented in the datacenter in the cloud analyst as per the flowchart shown in

the Figure 4.8. The steps of implementing the optimized algorithm are shown in

the following steps.

Step 1 : Initialize the VMs with their states as AVAILABLE.

Step 2 : Create two queues lownode and highnode. Initially, all VMs

are added to lownode.

Step 3 : Create two variable low and high and initialize them with

value which are the limits.

Step 4 : If count of requests in VM is less than high, then the request

is allocated automatically.

Step 5 : If count of requests in VM is greater than high then the VM is

added to the highnode queue.

Step 6 : If the count of requests is within the limits, then if VM is

available the request is allocated. Otherwise, the request is

allocated to VMs with minimum requests.

29

Figure 4.8 Flowchart of optimized algorithm

4.7 ADVANTAGES OF PROPOSED ALGORITHMS

The main advantage of proposed algorithms is that the datacentre which is

used for processing takes less time when compared to the existing algorithms. It

also reduces the average response time and can process the requests quickly.

30

CHAPTER 5

SYSTEM DESIGN AND IMPLEMENTATION

5.1 TECHNOLOGIES USED

This section contains a brief description of tools and technologies used in

our algorithm.

5.1.1 JAVA

Java is an Object-Oriented programming language that operates with the

help of objects. It supports the object-oriented features which are commonly used

in present scenario. In cloud, these features help the developers to deploy and

develop many applications and services.

Cloud computing provides a platform through which users can interact

with the cloud services and continue to use them as needed. This platform must

be accessible from any device whether it is a laptop, a mobile, a tablet or any

other device.

Java has the ability to run on any platform that makes this possible. Java

byte code made it very portable and secure for use. Many computational tasks

performed in the cloud networks require smooth and quick networking services.

Java has many networking features which are used in the cloud computing.

Java applet is one of the most popular features that revolutionized web [38] and

internet technology.

5.1.2 CLOUDSIM

CloudSim [9] is a simulator that uses CloudSim Toolkit to simulate the

cloud environment in surroundings. CloudSim is used to visualize cloud

31

infrastructure. CloudSim is used to simulate the cloud components. This means

the connection of different types of clouds. The multi-layer architecture of

CloudSim is shown in the Figure 5.1.

Figure 5.1 Architecture of cloudsim

5.1.3 CLOUD ANALYST

Cloud Analyst is a user-friendly environment. Cloud Analyst [38] is a

simulator based on Graphical User Interface (GUI). It is used for modelling and

analyzing applications. Cloud Analyst is built on the top of the CloudSim and it

extends the properties of CloudSim. The components of Cloud Analyst are GUI

Package, Region, User Base, Datacenter, DC Controller, Internet characteristics,

Load Balancer, Server Broker.

32

Figure 5.2 Components of cloudanalyst

5.2 SYSTEM REQUIREMENTS

 The requirements for implementing the Hash ESCE algorithm is discussed

in this section.

5.2.1 REGION ASSUMPTION

User Base and the Broker policies are located with the help of region. It is

used for communication. R0, R1, R2, R3, R4 and R5. Table 5.1 shows the

assumption of user based on the geographical location.

Table 5.1 Assumption of Regions

Region Cloud analyst

Region Id

Users

Africa 4 20

Oceania 5 30

Asia 3 80

North America 0 70

South America 1 50

Europe 2 50

33

5.2.2 USERBASE CONFIGURATION

In the userbase configuration the parameters like name, region, peak time

start, request size, region, data size and off-peak time are mentioned. Table 5.2

displays the information of the user base and the data on each userbase.

Table 5.2 UserBase Parameters

User

Base

Region Time

zone

Peak

Hours

(GMT)

Peak

Hours

(Local

Time)

Online users

simultaneously

during peak

hours

Online

users

during off

peak

hours

UB1 0 GMT

-6.00

14.00-

16.00

8.00-10.00

pm

500000 40000

UB2 1 GMT

-4.00

16.00-

18.00

8.00-10.00

pm

200000 20000

UB3 2 GMT

-6.00

14.00-

16.00

8.00-10.00

pm

400000 40000

UB4 3 GMT

-6.00

14.00-

16.00

8.00-10.00

pm

250000 25000

UB5 4 GMT

-6.00

14.00-

16.00

8.00-10.00

pm

150000 15000

UB6 5 GMT

-6.00

14.00-

16.00

8.00-10.00

pm

180000 18000

5.2.3 DATACENTER CONFIGURATION

Name, Region, Arch, Operating System (OS), Virtual Machine Manager

(VMM), Cost, Memory, Storage, Data Transfer and Physical hardware are

mentioned in the system.

34

5.3 COMPONENTS OF CLOUD ANALYST

 Cloud analysts have many components for cloud modelling. They are,

❖ GUI Package: Java GUI

❖ Region: Datacentres and userbases are created in 6 regions.

❖ Userbase: Request to datacentre is sent from userbase

❖ Datacentre: It processes the requests from the userbase. It includes

many VMs.

❖ Datacentre Controller: It is used to control the datacentres and

VMs.

❖ Internet Characteristics: Characteristics of Bandwidth and latency

are included here.

❖ VM Load Balancer: It is used to balance the incoming requests to

the datacentre.

❖ Service Broker: It helps in clearing the traffic of requests in the

web.

5.4 SYSTEM IMPLEMENTATION

 The system implementation will be done in the following steps.

❖ Import Cloud Analyst in Eclipse

❖ Datacentre Controller

DatacenterController.java in cloud analyst is used to add new algorithm

which adds the algorithm in the cloud analyst workspace. Figure 5.3 shows

the addition of Hash ESCE algorithm and Optimized algorithm in the

DatacenterController.java.

35

Figure 5.3 DatacenterController code snippet

❖ Adding Constants

The algorithm should have some constants to run the cloud analyst. Two

constants LOAD_BALANCED_MODIFIED and _OPTIMIZED has been

added in the Constants.java as shown in the Figure 5.4.

Figure 5.4 Constants.java code snippet

36

❖ Configuration of Simulation Panel

In the configuration panel, the Hash ESCE algorithm and the optimized

algorithm has been called with its constants and it executes the program.

In ConfigureSimulationPanel.java, implementation of our proposed

algorithms is shown in the Figure 5.5.

Figure 5.5 Code snippet of configuration simulation panel

❖ Implementation of proposed algorithms

In Eclipse, create a JAVA project and import the cloud analyst. In

the cloud analyst, there is a package called cloudsim.ext.datacenter.

• Implementation of Hash ESCE Algorithm

Create new java class and implement the proposed algorithms in

java. Implementation of Hash ESCE algorithm in the eclipse IDE using

Java has been depicted in the Figure 5.6.

37

Figure 5.6 Implementation of hash ESCE algorithm in datacentre

• Implementation of Optimized algorithm

Create new java class and implement the proposed algorithms

in java. Implementation of Optimized algorithm in the eclipse IDE

using Java has been depicted in the Figure 5.7.

Figure 5.7 Implementation of optimized algorithm in datacentre

38

CHAPTER 6

RESULTS AND COMPARISON

Results are done in two ways. First, the modelling of the existing load

balancing algorithm and Second, the modelling of the proposed algorithm. Then

the results are compared with the existing algorithms in traditional approach.

Graphical analysis of the results is done to get clear understanding of those

approaches.

6.1 CLOUDANALYST WORKSPACE

This indicates the framework of Cloud Analyst Simulator. In this frame,

work can assign the Userbases, Datacentres and different regions. The Cloud

Analyst isn’t having Graphical User Interface. Cloud Analyst uses Java Interface

for simulation and it works in Eclipse Environment. The ranges are expressed as

R0, R1, R2, R3, R4 and R5 as depicted in the Figure 6.1.

Figure 6.1 Cloud analyst workspace

39

6.2 SIMULATION RESULTS OF EXISTING ALGORITHMS

The overall response time and datacentre processing time can be analysed

through the output. Generally, the average response time is considered for

performance evaluation. It offers the minimal response time in comparison to

others.

The simulation of ESCE, Round Robin and Throttled algorithm has been

done in Cloud Analyst with two Datacentres and three userbases. For the Server

Broker Policy, Closest Datacentre has been chosen which gives maximum profit

to cloud services.

The Figure 6.2 shows the overall response time and datacentre processing

time for the simulation of ESCE.

Figure 6.2 Overall time summary of ESCE algorithm

The simulation of Round Robin algorithm is done successfully and the

overall time summary has been shown in the Figure 6.3.

Figure 6.3 Overall time summary of round robin algorithm

40

Overall response time and datacentre processing time summary of

Throttled algorithm is shown in the Figure 6.4 after the simulation.

Figure 6.4 Overall time summary of throttled algorithm

 Thus, the overall response time and datacentre processing time is taken

from simulation of ESCE, RR and Throttled load balancing algorithms.

6.3 SIMULATION RESULTS OF PROPOSED ALGORITHMS

Average response time of Hash ESCE algorithm and Optimized algorithm

have been analysed with the cloud analyst. The proposed Hash ESCE algorithm

and Optimized algorithm has been implemented successfully and the simulation

is done with same number of datacentres and userbases.

The Figure 6.5 shows the complete simulation of Hash ESCE algorithm

with Closest Data Centre broker policy.

41

Figure 6.5 Simulation of hash ESCE algorithm

The complete response time summary after simulation of the Hash ESCE

algorithm has been shown in the Figure 6.6.

Figure 6.6 Response time summary of hash ESCE algorithm

The datacentre servicing time is obtained after the completion of

simulation and cost is shown in the Figure 6.7.

42

Figure 6.7 Datacentre processing time with cost of hash ESCE algorithm

The Figure 6.8 shows the complete simulation of optimized algorithm with

Closest Data Centre broker policy.

Figure 6.8 Simulation of optimized algorithm

The complete response time summary after simulation of the Optimized

algorithm has been shown in the Figure 6.9.

43

Figure 6.9 Response time summary of optimized algorithm

The datacentre servicing time is obtained after the completion of

simulation and cost is shown in the Figure 6.10.

44

Figure 6.10 Datacentre processing time with cost of optimized algorithm

6.4 COMPARISON OF PROPOSED ALGORITHMS WITH EXISTING

ALGORITHMS

The Hash ESCE algorithm and Optimized algorithm has been implemented

successfully in the cloud analyst toolkit. The results of the proposed algorithms

are compared with the existing algorithms.

The datacentre processing time and overall response time of VM is

compared. Proposed algorithms give an output with less response time and less

datacentre processing time.

The Figure 6.11 shows the comparison of the existing load balancing

algorithm and proposed algorithms with two datacentres and three user bases.

45

Figure 6.11 Comparison of algorithms with 2 DCs and 3 User Bases

The number of datacentres will also decide the response time and

datacentre processing time in the cloud. That is, the number of datacenters is

directly proportional to the data processing time and response time of the request.

Thus, A comparison of the proposed algorithms and existing algorithms with 4

datacentres and 3 userbases is done and the outputs is plotted in the graph as

shown in the Figure 6.12.

0.38 0.38
0.36

0.34
0.33

0.28146 0.28145 0.28147 0.2804 0.28146

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Round Robin ESEC Throttled Hash ESCE Optimized

COMPARISON OF MODIFIED ALGORITHM WITH

EXISTING ALGORITHMS -

2 DCs and 3 UserBases

Datacenter processing time(ms)

Overall Response Time(ns)

ms

LOAD BALANCING ALGORITHMS

T
IM

E

46

Figure 6.12 Comparison of algorithms with 4 DCs and 3 User Bases

Comparison of the modified algorithms and existing algorithms with 4

datacentres and 4 userbases is done. This comparison is done because the number

of userbases will also change the response time and datacentre processing time.

This comparison result is plotted as shown in the Figure 6.13.

Figure 6.13 Comparison of algorithms with 4 DCs and 4 User Bases

0.45

0.4
0.43

0.39
0.37

0.13394 0.13393 0.13391 0.1339 0.13389

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Round Robin ESEC Throttled Modified Optimized

COMPARISON OF MODIFIED ALGORITHM WITH

EXISTING ALGORITHMS-

4 DCs and 3 UserBases

Datacenter processing time(ms) Overall Response Time(ns)

ms

0.45
0.42

0.45

0.4 0.39

0.11278 0.1128 0.11279 0.1127 0.11269

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Round Robin ESEC Throttled Modified Optimized

COMPARISON OF MODIFIED ALGORITHM WITH

EXISTING ALGORITHMS-

4 DCs and 4 UserBases

Datacenter processing time(ms)

Overall Response Time(ns)

ms

LOAD BALANCING ALGORITHMS

LOAD BALANCING ALGORITHMS

T
IM

E

T
IM

E

47

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 CONCLUSION

The basic purpose of Hash ESCE algorithm and Optimized algorithms are

to achieve less response time and datacentre processing time. Load balancing is

a main part of the performance of the existing algorithms. The proposed Hash

ESCE algorithm and Optimized algorithm is implemented in the cloud

environment using Cloud Analyst. From the simulation results of the proposed

Hash ESCE algorithm and Optimized algorithm, it is found that these algorithms

take less datacentre processing time and response time. These algorithms work

with no error in VM.

The load balancing algorithms are evaluated using the datacentre

processing time and the response time. The response time and datacentre

processing time are directly proportional to the number of datacenters and

userbases. The project should design a load balancing policy which satisfy all the

parameters which in turn increases the overall efficiency of the system.

In this project, analysis of parameters has been done in detail. The

comparison of all the load balancing parameters are done which is used to

evaluate the efficiency of the system. It also discusses various service broker

policies in combination with various load balancing algorithms.

The service broker policy plays an important role in the real time traffic

over network. In cloud computing system, all related operations are done in short

period of time with higher efficiency.

48

7.2 FUTURE WORK

In future, a number of modifications can be done to get better results. The

proposed method can be modified further to achieve power saving while making

overall system energy efficient. It can also be made more time and cost efficient.

These algorithms can be integrated into the lower layer. i.e., VM, where the VM

is mapped to the cloudlets. This improves the efficiency of the system and

shortens the overall response time. This work can be deployed in some real-time

platforms to handle the real time traffic in the network and then evaluating the

performance of the system.

49

APPENDIX

Code for Hash ESCE Algorithm:

package cloudsim.ext.datacenter;

import java.util.Collections;

import java.util.HashMap;

import java.util.Iterator;

import java.util.Map;

import cloudsim.ext.Constants;

import cloudsim.ext.event.CloudSimEvent;

import cloudsim.ext.event.CloudSimEventListener;

import cloudsim.ext.event.CloudSimEvents;

public class Modified_Algo extends VmLoadBalancer implements

CloudSimEventListener {

 private Map<Integer, VirtualMachineState> vmStatesList;

 private Map<Integer, Integer> currentAllocationCounts;

 public Modified_Algo(DatacenterController dcb){

 this.vmStatesList = dcb.getVmStatesList();

 dcb.addCloudSimEventListener(this);

 this.currentAllocationCounts = Collections.synchronizedMap(new

HashMap<Integer, Integer>());

//HashMap - which is used to store the VMStates list with the status of those

VMStateslist

 }

@Override

 public int getNextAvailableVm(){

 int vmId = -1;

50

 if (vmStatesList.size() > 0){

//Checks for the VMStatesList size

 int temp;

for (Iterator<Integer> itr = vmStatesList.keySet().iterator();

itr.hasNext();){

 temp = itr.next();

 VirtualMachineState state = vmStatesList.get(temp);

 if (state.equals(VirtualMachineState.AVAILABLE)){

 // If the VM available then allocate VM

 vmId = temp;

 break;

 }else{

 //If the VM busy, then Load balancer checks for minimum

load

if (currentAllocationCounts.size() < vmStatesList.size()){

// If hashmap size less than VMStates

 if (!currentAllocationCounts.containsKey(temp)){

 vmId = temp;

 break;

 }} else {

//If the Hashmap contains min load then the VM is allocated

 int currCount;

 int minCount = Integer.MAX_VALUE;

for (int thisVmId : currentAllocationCounts.keySet()){

 currCount = currentAllocationCounts.get(thisVmId);

 if (currCount < minCount){

 minCount = currCount;

 vmId = thisVmId;

 }}}}}

51

 allocatedVm(vmId);}

 return vmId;

}

public void cloudSimEventFired(CloudSimEvent e) {

if (e.getId() ==CloudSimEvents.EVENT_CLOUDLET_ALLOCATED_TO_VM)

{

 int vmId = (Integer) e.getParameter(Constants.PARAM_VM_ID);

 Integer currCount = currentAllocationCounts.remove(vmId)

if (currCount == null){

 currCount = 1;

} else {

 currCount++;}

currentAllocationCounts.put(vmId, currCount);

//vmStatesList.put(vmId, VirtualMachineState.BUSY);

}

else if (e.getId() == CloudSimEvents.EVENT_VM_FINISHED_CLOUDLET){

 int vmId = (Integer) e.getParameter(Constants.PARAM_VM_ID);

 Integer currCount = currentAllocationCounts.remove(vmId);

 if (currCount != null){

 currCount--;

 currentAllocationCounts.put(vmId, currCount);

 //vmStatesList.put(vmId, VirtualMachineState.AVAILABLE);

 }}

}}

52

Code for Optimized Algorithm:

package cloudsim.ext.datacenter;

import java.util.ArrayDeque;

import java.util.Collections;

import java.util.Deque;

import java.util.HashMap;

import java.util.Map;

import java.util.Random;

import cloudsim.ext.Constants;

import cloudsim.ext.event.CloudSimEvent;

import cloudsim.ext.event.CloudSimEventListener;

import cloudsim.ext.event.CloudSimEvents;

public class Optimized extends VmLoadBalancer implements

CloudSimEventListener {

 private Map<Integer, Integer> currentAllocationCounts;

 private Map<Integer, VirtualMachineState> vmStatesList;

 private final int low = 50, high = 150;

 private Deque<Integer> low Nodes;

 private Deque<Integer> highNodes;

 Random rand;

 public Optimized(DatacenterController dcb){

 dcb.addCloudSimEventListener(this);

 this.vmStatesList = dcb.getVmStatesList();

 rand = new Random();

 initializeUnderLoaded(); //initializing all to underLoaded nodes

 highNodes = new ArrayDeque<Integer>(vmStatesList.size());;

 this.currentAllocationCounts = Collections.synchronizedMap(new

HashMap<Integer, Integer>());

53

 }

 private void initializeUnderLoaded(){

 lowNodes = new ArrayDeque<Integer>(vmStatesList.size());

 for (int e : vmStatesList.keySet()){

 lowNodes.push(e);

 }}

 @Override

 public int getNextAvailableVm(){

 int vmId = -1;

 if (vmStatesList.size() > 0){

 //random number range 0 - vmStatesList.size()

 int rn = rand.nextInt(vmStatesList.size());

 Integer currCount=currentAllocationCounts.remove(rn);

//get allocation counts for that node

 if (currCount == null){

 currCount = 1;

 }if (!(currCount > high)){ //if(not overloaded) then rn

 vmId = rn;

 }else if(!lowNodes.isEmpty()){

//else if(medium loaded node is present)

 vmId = findLowNode();

 }else{

 vmId = rn;

 highNodes.addLast(vmId);

 }if(vmId == rn){

 if(currCount > 1) currCount++;

 currentAllocationCounts.put(vmId, currCount);

 }else{

 currentAllocationCounts.put(vmId, currCount);

54

 }}

 allocatedVm(vmId);

 return vmId;

 }

 private int findLowNode() {

 //find under loaded node and return ID

 //If all available VMs are not allocated, allocated the new ones

 int vmId = lowNodes.pop();

 Integer currCount = currentAllocationCounts.remove(vmId);

 if (currCount == null){

 currCount = 1;

 } else {

 currCount++;}

 if(currCount < low){

 lowNodes.addLast(vmId);}

 currentAllocationCounts.put(vmId, currCount);

 return vmId;

 }

 public void cloudSimEventFired(CloudSimEvent e) {

 if (e.getId() ==

CloudSimEvents.EVENT_CLOUDLET_ALLOCATED_TO_VM){

 int vmId = (Integer)

e.getParameter(Constants.PARAM_VM_ID);

 Integer currCount = currentAllocationCounts.remove(vmId);

 if (currCount == null){

 currCount = 1;}

 else {

 currCount++;}

 currentAllocationCounts.put(vmId, currCount);

55

 } else if (e.getId() ==

CloudSimEvents.EVENT_VM_FINISHED_CLOUDLET){

 int vmId = (Integer)

e.getParameter(Constants.PARAM_VM_ID);

 Integer currCount = currentAllocationCounts.remove(vmId);

 if (currCount != null){

 currCount--;

 currentAllocationCounts.put(vmId, currCount);

 if(currCount < low){

 lowNodes.addLast(vmId);//check VM for under

and over load

 }}

 if (currCount == null){

 lowNodes.push(vmId);

 }}

}}

Datacentre Controller.java

package cloudsim.ext.datacenter;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.Collections;

import java.util.HashMap;

import java.util.LinkedList;

import java.util.List;

import java.util.Map;

56

import cloudsim.DataCenter;

import cloudsim.DatacenterBroker;

import cloudsim.DatacenterCharacteristics;

import cloudsim.DatacenterTags;

import cloudsim.VMCharacteristics;

import cloudsim.VirtualMachine;

import cloudsim.ext.Constants;

import cloudsim.ext.GeoLocatable;

import cloudsim.ext.InternetCharacteristics;

import cloudsim.ext.InternetCloudlet;

import cloudsim.ext.event.CloudSimEvent;

import cloudsim.ext.event.CloudSimEventListener;

import cloudsim.ext.event.CloudSimEvents;

import cloudsim.ext.event.CloudsimObservable;

import cloudsim.ext.stat.HourlyEventCounter;

import cloudsim.ext.stat.HourlyStat;

import cloudsim.ext.util.CommPath;

import cloudsim.ext.util.InternetEntitityRegistry;

import eduni.simjava.Sim_event;

import eduni.simjava.Sim_stat;

import eduni.simjava.Sim_system;

import gridsim.GridSim;

57

import gridsim.GridSimTags;

public class DatacenterController extends DatacenterBroker implements

GeoLocatable, CloudsimObservable, Constants {

 private List<CloudSimEventListener> listeners;

 private VmLoadBalancer loadBalancer;

 private int region;

 private Sim_stat stat;

 private int queuedCount = 0;

 private double costPerVmHour;

 private double costPerDataGB;

 private double totalData;

 private HourlyEventCounter hourlyArrival;

 private HourlyStat hourlyProcessingTimes;

 private Map<Integer, Double[]> vmUsage;

 private Map<Integer, VirtualMachineState> vmStatesList;

 private Map<Integer, Long[]> processingCloudletStatuses;

 private int requestsPerCloudlet;

 private List<InternetCloudlet> waitingQueue;

 private String dcName;

 private boolean lastVmCreateFailed = false;

 private int allRequestsProcessed = 0;

58

 public DatacenterController (String name, int region, double

costPerVmHour,

 double costPerDataGB, int requestsPerCloudlet, String

loadBalancePolicy) throws Exception {

 super(name + "-Broker");

 this.dcName = name;

 System.out.println("Creating new broker " + get_name());

 listeners =new ArrayList<CloudSimEventListener>();

 this.region = region;

 this.costPerVmHour = costPerVmHour;

 this.costPerDataGB = costPerDataGB;

 this.requestsPerCloudlet = requestsPerCloudlet;

 InternetCharacteristics.getInstance().addEntity(this);

 stat = new Sim_stat();

 stat.add_measure(DC_SERVICE_TIME,

Sim_stat.INTERVAL_BASED);

 hourlyProcessingTimes = new HourlyStat(stat, "Overloading status

: " + get_name(), Sim_stat.INTERVAL_BASED);

 set_stat(stat);

 hourlyArrival = new HourlyEventCounter("Hourly Arrival Rate : " +

get_name());

 vmUsage = new HashMap<Integer, Double[]>();

59

 vmStatesList = Collections.synchronizedMap (new HashMap <Integer,

VirtualMachineState> ());

 waitingQueue = Collections.synchronizedList (new LinkedList

<InternetCloudlet>());

 processingCloudletStatuses = new HashMap<Integer, Long[]>();

 if (loadBalancePolicy.equals(Constants.LOAD_BALANCE_ACTIVE)){

 this.loadBalancer = new ActiveVmLoadBalancer(this);

 }else if

(loadBalancePolicy.equals (Constants. LOAD_BALANCE_POLICY_RR))

{ this.loadBalancer = new RoundRobinVmLoadBalancer(vmStatesList);

}else if

(loadBalancePolicy.equals(Constants.LOAD_BALANCE_THROTTLED)){

 this.loadBalancer = new ThrottledVmLoadBalancer(this);

}else if

(loadBalancePolicy.equals(Constants.LOAD_BALANCE_OPTIMIZED)){

 this.loadBalancer = new Optimized(this); // Add optimized

algorithm in datacenter}

 else { this.loadBalancer = new Modified_Algo(this); //Add the modified

algorithm in the Datacenter

}}

60

Constants.java

package cloudsim.ext;

public interface Constants {

 final String STANDARD_SEPARATOR = "-";

 final int WORLD_REGIONS = 6;

 final String INTERNET = "Internet";

 final int REQUEST_INTERNET_CLOUDLET_TAG = 2001;

 final int RESPONSE_INTERNET_CLOUDLET_TAG = 2002;

 final String MEASURE_TYPE_OVERALL_USER_BASE_RESPONSE

= "Overall userbase response time";

 final String MEASURE_TYPE_USER_BASE_RESPONSE = "Userbase

Response Time";

 final String MEASURE_TYPE_DC_PROCESSING_TIME = "DC

Processing Time";

 final String PARAM_PROCESSING_TIME = "processing_time";

 final String PARAM_COMM_PATH = "commPath";

 final double MILLI_SECONDS_TO_DAYS = 1000 * 60 * 60 * 24;

 final int DEFAULT_APP_ID = 1;

 final String SIMULATION_COMPLETED_TIME =

"sim_completed_at";

 final String PDF_EXTENSION = ".pdf";

 //Default Data Center characteristics

 final String DEFAULT_DATA_CENTER_NAME = "DC1";

 final String DEFAULT_ARCHITECTURE = "x86";

 final String DEFAULT_OS = "Linux";

 final String DEFAULT_VMM = "Xen";

 final int DEFAULT_DC_REGION = 0;

 final int DEFAULT_VM_COUNT = 5;

61

 final double DEFAULT_COST_PER_PROC = 0.1; // the cost of using

processing in this resource

 final double DEFAULT_COST_PER_MEM = 0.05; // the cost of using

memory in this resource

 final double DEFAULT_COST_PER_STOR = 0.1; // the cost of using

storage in this resource

 final double DEFAULT_COST_PER_BW = 0.1;

 final int DEFAULT_MC_MEMORY = 204800;

 final long DEFAULT_MC_STORAGE = 100000000;

 final int DEFAULT_MC_BW = 1000000;

 final int DEFAULT_MC_PROCESSORS = 4;

 final int DEFAULT_MC_SPEED = 10000;

 final long DEFAULT_VM_IMAGE_SIZE = 10000;//MB

 final int DEFAULT_VM_MEMORY = 512;//MB

 final long DEFAULT_VM_BW = 1000;

 //Default User base characteristics

 final String DEFAULT_USER_BASE_NAME = "UB1";

 final int DEFAULT_UB_REGION = 2;

 final int DEFAULT_REQ_PER_USER_PER_HR = 60;

 final long DEFAULT_REQ_SIZE = 100;

 final int[] DEFAULT_PEAK_HOURS = new int[]{3, 9};

 final int DEFAULT_PEAK_USERS = 1000;

 final int DEFAULT_OFFPEAK_USERS = 100;

 final String UB_STATS = "UB stats";

 final String DC_ARRIVAL_STATS = "DC stats";

 final String DC_PROCESSING_TIME_STATS = "DC processing time

stats";

 final String DC_OVER_LOADING_STATS = "DC overloading stats";

 final String COSTS = "Costs";

62

 final String VM_COST = "VM Cost";

 final String DATA_COST = "Data Cost";

 final String TOTAL_COST = "Total Cost";

 final String BROKER_POLICY_PROXIMITY = "Closest Data Center";

 final String BROKER_POLICY_OPTIMAL_RESPONSE = "Optimise

Response Time";

 final String BROKER_POLICY_DYNAMIC = "Reconfigure

Dynamically with Load";

 final String LOAD_BALANCE_POLICY_RR = "Round Robin";

 final String LOAD_BALANCE_ACTIVE = "Equally Spread Current

Execution Load";

 final String LOAD_BALANCE_THROTTLED = "Throttled";

final String LOAD_BALANCE_OPTIMIZED = "Optimized";

 final String LOAD_BALANCE_MODIFIED = "Modified Algorithm";}

ConfigureSimulationPanel.java

private JPanel createAdvancedTab(){

 int leftMargin = 50;

 int x = leftMargin;

 int y = 50;

 int vGap = 20;

 JPanel advancedTab = new JPanel();

 advancedTab.setLayout(null);

 int compW = 500;

 int compH = 20;

63

 compW = 240;

 int lastCompH = compH = 60;

 JLabel lblUserGroup = new JLabel("<html>User grouping factor in

User Bases:" +"
(Equivalent to number of simultaneous" + "
 users from

a single user base)</html>");

 lblUserGroup.setBounds(x, y, compW, compH);

 advancedTab.add(lblUserGroup);

 x += compW + vGap;

 y += 10;

 compW = 80;

 compH = 20;

 txtUserGroupingFactor = new JTextField ("" + simulation.

getUserGroupingFactor());

 txtUserGroupingFactor.setBounds(x, y, compW, compH);

 advancedTab.add(txtUserGroupingFactor);

 x = leftMargin;

 y += lastCompH + vGap;

 compW = 240;

 lastCompH = compH = 70;

 JLabel lblDcRequestGrouping = new JLabel("<html>Request

grouping factor in Data Centres:" + "
(Equivalent to number of

simultaneous" + "
 requests a single applicaiton server" + "
 instance

can support.) </html>");

64

 lblDcRequestGrouping.setBounds(x, y, compW, compH);

 advancedTab.add(lblDcRequestGrouping);

 x = leftMargin;

 y += lastCompH + vGap;

 compW = 240;

 compH = 30;

 JLabel lblInstructionLength = new JLabel("<html>Executable

instruction length per request:" + "
(bytes)</html>");

 lblInstructionLength.setBounds(x, y, compW, compH);

 advancedTab.add(lblInstructionLength);

 x += compW + vGap;

 compW = 80;

 compH = 20;

 txtInstructionLength = new JTextField("" +

simulation.getInstructionLengthPerRequest());

 txtInstructionLength.setBounds(x, y, compW, compH);

 advancedTab.add(txtInstructionLength);

 x = leftMargin;

 y += lastCompH + vGap;

 compW = 240;

 compH = 30;

65

 JLabel lblLoadBalancing = new JLabel("<html>Load balancing

policy
" +"across VM's in a single Data Center:</html>");

 lblLoadBalancing.setBounds(x, y, compW, compH);

 advancedTab.add(lblLoadBalancing);

 x += compW + vGap;

 compW = 240;

 compH = 20;

 cmbLoadBalancingPolicy = new JComboBox(new String[]{

 Constants.LOAD_BALANCE_POLICY_RR,

 Constants.LOAD_BALANCE_ACTIVE,

 Constants.LOAD_BALANCE_THROTTLED,

Constants.LOAD_BALANCE_OPTIMIZED,

// Add Optimized constant for optimized algorithm

 Constants.LOAD_BALANCE_MODIFIED

//Add a constant for Hash ESCE

 });

 cmbLoadBalancingPolicy.setSelectedItem(simulation.getLoadBalancePol

icy());

 cmbLoadBalancingPolicy.setBounds(x, y, compW, compH);

 advancedTab.add(cmbLoadBalancingPolicy);

 return advancedTab;

 }

66

REFERENCES

[1] Ajay Gulati, Ranjeev.K.Chopra, “Dynamic Round Robin for Load

Balancing in a Cloud Computing”, IJCSMC, June 2013.

[2] Alexandru Iosup, Member, IEEE, Simon Ostermann,Nezih Yigitbasi,

Member, IEEE, Radu Prodan, Member, IEEE, Thomas Fahringer,

Member, IEEE, and Dick Epema, Member, IEEE, “Performance Analysis

of Cloud Computing Services for Many-Tasks Scientific Computing”,

IEEE TPDS, MANY-TASK COMPUTING, NOVEMBER 2010.

[3] Ankush P.Deshmukh and Prof. Kumarswamy Pamu “Applying Load

Balancing: A Dynamic Approach” (IJARCSSE), vol. 2, issue 6, June 2012.

[4] Anthony T.Velte, Toby J.Velte, Robert Elsenpeter, Cloud Computing A

Practical Approach, TATA McGRAWHILL Edition 2010.

[5] Bhathiya Wickremasinghe, “CloudAnalyst: A CloudSim based Tool for

Modeling Chapter7 Page 69 and Analysis of Large-Scale Cloud

Computing Environments” MEDC project report, 433-659 Distributed

Computing project, CSSE department., University of Melbourne, 2009.

[6] Che-Lun Hung, Hsiao-hsi Wang and Yu-Chen Hu, “Efficient Load

Balancing Algorithm for Cloud Computing Network,” Dept. of Computer

Science & Communication Engineering, Providence University 200

Chung Chi Rd., Taichung 43301, Republic of China (Taiwan).

67

[7] Ching-Chi Lin, Pangfeng Liu, Jan-Jan Wu, “Energy-Aware Virtual

Machine Dynamic Provision and Scheduling for Cloud Computing”, IEEE

4th International Conference on Cloud Computing, 2011.

[8] D A Menasce, P NGO, “Understanding Cloud Computing:

Experimentation and Capacity Planning”, Proc. Computer Measurement

Group Conf, Dallas, TX, Dec. 7-11, 2009.

[9] Definitions of cloud simulator: http://www.cloudbus.org/cloudsim

[10] Foster, Y. Zhao, I. Raicu, and S. Lu. Cloud computing and grid computing

360- degree compared. In Proceedings of Grid Computing Environments

Workshop, pages 1–10, 2008.

[11] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large

clusters. Communications of the ACM, 51(1):107–113, 2008.

[12] Jaspreet kaur “Comparison of Load balancing algorithms in a Cloud”

International Journal of Engineering Research and Applications” (IJERA),

vol. 2, issue 3, May, June 2012.

[13] Jeffrey M. Galloway, Karl L. Smith, Susan S. Vrbsky, “Power Aware Load

Balancing for Cloud Computing”, Proceedings of the World Congress on

Engineering and Computer Science 2011 Vol I WCECS 2011, October 19-

21, 2011.

[14] Jingnan Yao Jiani Guo; Bhuyan, L.N., “Ordered Round-Robin: An

Efficient Sequence Preserving Packet Scheduler” IEEE transactions, vol.

57, issue: 12, 30 May, 2008.

68

[15] Kumar Nishant, Pratik Sharma, Vishal Krishna, Chhavi Gupta and Kuwar

Pratap Singh, Nitin and Ravi Rastogi, “Load Balancing of Nodes in Cloud

Using Ant Colony Optimization” IEEE 2012 14th International

Conference on Modelling and Simulation.

[16] M. Armbrust A. Fox, and R. Griffith. Above the clouds: A berkeley view

of cloud computing. Technical Report UCB/EECS-2009-28, EECS

Department, University of California, Berkeley, Feb 2009.

[17] Md. S. Q. Zulkar Nine, Md. Abul Kalam Azad, Saad Abdullah, Rashedur

M Rahman, “Fuzzy Logic Based Dynamic Load Balancing in Virtualized

Data Centres”, Fuzzy Systems (FUZZ), 2013 IEEE International

Conference.

[18] Milan E. Soklic “Simulation of Load balancing algorithms” ACM -

SIGCSE Bulletin, December, 2002.

[19] Mishra, Ratan, Jaiswal, Anant,P “Ant Colony Optimization: A Solution Of

Load Balancing In Cloud”, April 2012, International Journal Of Web &

Semantic Technology;Apr2012, Vol. 3 Issue 2, P33

[20] Nidhi Jain Kansal and Inderveer Chana, “Existing Load Balancing

Techniques in Cloud Computing: A systematic Review”,Journal of

Information Systems and Communication, 2012.

[21] P. Mell and T. Grance. The NIST Definition of Cloud Computing (Draft).

National Institute of Standards and Technology, 53:7, 2010.

69

[22] Panagiotis Kalagiakos, Panagiotis Karampelas, "Cloud Computing

Learning" in the Proceeding of IEEE International Conference on

Application of Information and Communication Technologies, Baku,Oct.

2011.

[23] Patrick Naughton and Herbert Schildt, Complete Reference

Osborne/McGraw-Hill 1999.

[24] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling And Simulation Of

Scalable Cloud Computing Environments And The Cloudsim Toolkit:

Challenges And Opportunities,” Proc. Of The 7th High Performance

Computing and Simulation Conference (HPCS 09), IEEE Computer

Society, June 2009.

[25] Radojevic, B. & Zagar, M. (2011). Analysis of issues with load balancing

algorithms in hosted (cloud) environments. In proceedings of 34th

International Convention on MIPRO, IEEE.

[26] Randles, M., D. Lamb and A. Taleb-Bendiab, “A Comparative Study into

Distributed Load Balancing Algorithms for Cloud Computing,” in Proc.

IEEE 24th International Conference on Advanced Information Networking

and Applications Workshops (WAINA), Perth, Australia, April 2010.

[27] Raul´ Alonso-Calvo, Jose Crespo, Miguel Garc´ıa-Remesal, Alberto

Anguita and Victor Maojo, “On distributing load in cloud computing: A

real application for very-large image datasets”, International Conference

on Computational Science, ICCS 2010, pp.-2669- 2677, 2010.

70

[28] Shridhar G.Domanal and G.Ram Mohana Reddy “Load Balancing in

Cloud Computing Using Modified Throttled Algorithm” IEEE

International Conference on Cloud Computing in Emerging Markets

(CCEM), October 2013.

[29] Shu-Ching Wang, Kuo-Qin Yan, Wen-Pin Liao, Shun-Sheng Wang,

“Towards a Load Balancing in a Three-level Cloud Computing Network”,

2010 IEEE, pp. 108-113.

[30] Soumya Ray and Ajanta De Sarkar “Execution Analysis of Load Balancing

Algorithms in Cloud Computing Environment” (IJCCSA), vol.2, no.5,

October 2012.

[31] Srinivas Sethi, Anupama Sahu, Suvendu Kumar Jena, “Efficient load

Balancing in Cloud Computing using Fuzzy Logic”, IOSRJEN July 2012.

[32] Subasish Mohapatra, Subhadarshini Mohanty, K.Smruti Rekha, “Analysis

of Different Variants in Round Robin Algorithms for Load Balancing in

Cloud Computing”, IJCA, May 2013.

[33] Sun Microsystems, Inc.”Introduction to Cloud Computing Architecture”

Whitepaper, Ist Edition, June 2009.

[34] T V R Anandarajan, M A Bhagyabini, “Co-operative scheduled Energy

aware load balancing technique for an efficient computational cloud”,

IJCSI, volume 8, issue March, 2011.

71

[35] Zenon Chaczko Venkatesh Mahadevan, Shahrzad Aslanzadeh and

Christopher Mcdermid, “Availability and Load Balancing in Cloud

Computing”, 2011Page 70 International Conference on Computer and

Software Modeling IPCSIT vol.14, IACSIT Press, Singapore, 2011.

[36] Zhang Bo; Gao Ji; Ai Jieqing “Cloud Loading Balance algorithm”

Information Science and Engineering (ICISE), Second International

Conference, 4-6 Dec. 2010.

[37] Architecture of cloud sim: https://en.wikipedia.org/wiki/CloudSim

[38] Specifications of the Cloud Analyst Workspace and Cloud Analyst tool:

https://en.wikipedia.org/wiki/Cloud_analytics

[39] Definitions of load balancing in the cloud computing environment:

https://en.wikipedia.org/wiki/Load_balancing_(computing)

[40] NIST definitions of the load balancing in cloud computing:

https://csrc.nist.gov/publications/detail/sp/800-145/final

[41] Load Balancing in cloud computing definition of Foster:

http://www.ianfoster.org/wordpress/2017/10/01/new-book-cloud-

computing-for-science-and-engineering/

