
IOT BASED EMPTY PARKING SLOT DETECTION AND

VEHICLE GUIDANCE USING IMAGE PROCESSING

A PROJECT REPORT

Submitted by

C.V.AISHWARYA DEVI 715515105001

S.BAVATHARANI 715515105006

N.K.JAYA DARSHINI 715515105019

In partial fulfillment for the award of the degree

 Of

BACHELOR OF ENGINEERING

IN

ELECTRICAL AND ELECTRONICS ENGINEERING

PSG INSTITUTE OF TECHNOLOGY AND APPLIED RESEARCH

ANNA UNIVERSITY: CHENNAI 600 025

APRIL 2019

ANNA UNIVERSITY: CHENNAI 600 025

BONAFIDE CERTIFICATE

Certified that this project report ”IOT BASED EMPTY PARKING SLOT

DETECTION AND VEHICLE GUIDANCE USING IMAGE PROCESSING”

is the bonafide work of “C.V. AISHWARYA DEVI(715515105001),

S.BAVATHARANI (715515105006) , N. K. JAYADARSHINI(715515105019)”

who carried out the project work under my supervision.

Dr. C. L.VASU Mr. RAVIKRISHNA

HEAD OF THE DEPARTMENT FACULTY GUIDE

It is certified that the candidate was examined in the Viva Voce examination held

on 01/04/2019.

Internal Examiner External Examiner

Assistant professor

Department of Electrical and Electronics

Engineering

PSG Institute of Technology and

Applied Research

Department of Electrical and Electronics

Engineering

PSG Institute of Technology and Applied

Research

i

ABSTRACT

 In recent times the concept of smart cities has gained great popularity.

Problems such as traffic congestion, limited car parking facilities and road safety

are being addressed by IoT. The major problem occurring in a parking area is that

vehicles waste time on searching for parking slot. Sometimes it creates blockage.

Condition becomes worse when there are multiple parking lanes and each lane has

multiple parking slots. Use of automated system for car parking monitoring will

reduce human efforts. However, in current parking system a better but not an

optimal solution is being provided. It does not provide economic benefit, vehicle

refusal services and there is no resource reservation mechanism leading to queuing

system which is again time consuming. It also lacks to provide large scale parking

system. In this model of IOT based smart parking system, empty parking slot is

being detected by image processing technique. The number of empty slots are

obtained from the processed image is being stored in the cloud. Once the car is

being detected in the entrance, the parking space image is being captured by a

camera and is detected whether there is an empty slot or not. If there is an empty

slot, the gate is opened and allows the car into the nearest parking slot. Otherwise,

the user will be instructed that there is no available empty slot. The user is also

provided with a reservation facility. Thus the wastage of time in searching for a

parking area with available empty slot is reduced.

ii

ACKNOWLEDGEMENT

We would like to express our heartfelt gratitude to Dr. P .V. Mohanram,

Principal, PSG Institute of Technology and Applied Research, for providing us the

opportunity to carry out our project with the best infrastructure and facilities,

without the project would have not been successful.

We extend our sincere gratitude to Dr. C. L. Vasu, Head of the Department,

Electrical and Electronics Engineering, for his unfailing support throughout the

project.

We extend our heartfelt thanks to our project guide, Mr.S. Ravikrishna,

Assistant Professor, for his valuable advice which played a major role in

completion of the project.

We express our sincere thanks to all the staff members, friends, and our

parents for their constant support and guidance.

iii

TABLE OF CONTENTS

CHAPTER

NUMBER

TITLE PAGE

NUMBER

 ABSTRACT i

 LIST OF TABLES vi

 LIST OF FIGURES vii

 LIST OF ABBREVIATIONS viii

1 INTRODUCTION 1

 1.1 MOTIVATION 2

 1.2 PROBLEM STATEMENT 2

 1.3 SOLUTION 2

2 LITERATURE SURVEY 3

3 EMPTY SLOT DETECTION USING IMAGE

PROCESSING

7

 3.1 GENERAL SCHEMATIC BLOCK DIAGRAM 7

 3.2 USB CAMERA 8

 3.3 ARDUINO 9

 3.3.1 ARDUINO UNO 9

 3.3.2 FEATURES OF ARDUINO UNO 10

 3.3.3 PIN DIAGRAM 10

iv

 3.3.4 PIN DESCRIPTION 11

 3.4 INFRARED SENSOR 12

 3.5 BLUETOOTH (HC-05) 13

 3.6 LIGHT EMITTING DIODES 15

 3.7 SEVEN SEGMENT DISPLAY 15

 3.8 MATLAB 17

 3.8.1 IMAGE PROCESSING 18

 3.8.2 DIGITAL IMAGE 19

 3.8.3 EMPTY SLOT DETECTION 20

 3.8.4 IMAGE PROCESSING ALGORITHM 20

4 CLOUD BASED PARKING SLOT

MANAGEMENT

23

 4.1 INTERNET OF THINGS 23

 4.1.1 THINGSPEAK API 23

 4.1.2 THINGSPEAK FEATURES 24

 4.1.3 CREATING A CHANNEL IN THINGSPEAK

24

v

 4.2 MIT APP INVENTOR 26

 4.2.1PROCEDURE 27

 4.2.2 SIGNING IN 28

 4.2.3 DESIGNER 28

 4.2.4 BLOCK EDITOR 29

 4.2.5 AI2 COMPANION APP 29

5 RESULTS AND FUTURE DISCUSSIONS 32

 5.1 CONCLUSION 32

 5.2 LIMITATIONS 32

 5.3 FUTURE SCOPE 33

 APPENDICES

 REFERENCES

vi

LIST OF TABLES

TABLE NUMBER TITLE PAGE NUMBER

3.1 Specifications of USB

Camera

8

3.2 Specifications of Arduino

UNO

10

vii

LIST OF FIGURES

FIGURE

NUMBER

DESCRIPTION PAGE

NUMBER

3.1 Empty Slot Detection And Display 7

3.2 USB Web Camera 8

3.3 Arduino 9

3.4 Arduino Pin Diagram 10

3.5 Working of IR Sensor 12

3.6 Block Diagram of Typical System For

Detecting Infrared Radiation

13

3.7 Typical IR Sensor Module 13

3.8 Pin Diagram of a Bluetooth Module 14

3.9 Light Emitting Diode 15

3.10 Pin Diagram of a Seven Segment Display 16

3.11 Connection From MATLAB to Arduino Using

Bluetooth

16

3.12 Block Diagram Representing Empty Slot 20

3.13 Reference Image 21

3.14 Grayscale Image 21

3.15 Empty And Occupied Slots 22

viii

3.16 Display Of Empty Slots 22

4.1 Thingspeak Login Page 24

4.2 Status of the Channel 24

4.3 API Keys 25

4.4 Field 1 Data 25

4.5 Field 2 Data 26

4.6 MIT App Inventor Sign In Window 27

4.7 MIT App Inventor Home Page 28

4.8 MIT App Inventor Designer Window 28

4.9 MIT App Inventor Block Editor Window 29

4.10 Android Device Home Page 29

4.11 Display of Empty and Occupied Slots 30

4.12 Captured Image 30

4.13 Display of Reserved slots 31

ix

LIST OF ABBREVIATIONS

API Application Programming Interface

CA Common Anode

CC Common Cathode

EEPROM Electrically Erasable Programmable Read Only Memory

FTDI Future Technology Devices International

GPS Global Positioning System

ICSP In Circuit Serial Programming

IFTTT If This Then That

IoT Internet Of Things

IPA Intelligent Parking Assistant

IR Infra Red

LED Light Emitting Diode

MATLAB Matrix Laboratory

PWM Pulse Width Modulation

RFID Radio Frequency Identification Number

SE Structuring Element

SPS Smart Parking System

SRAM Static Random Access Memory

x

UART Universal Asynchronous Receiver Transmitter

UHF Ultra High Frequency

USB Universal Serial Bus

VANET Vehicular Ad Hoc Networks

VMD Variable Message Display

1

CHAPTER 1

INTRODUCTION

Finding a vacant parking space is a common problem in most urban cities.

This situation has become more serious especially during their peak time, be

it holiday seasons, sales carnivals or any other festivals. This problem arises

as most of the time, as patronscome by their own transport, resulting in

abundanceor high number or transports competing for a few vacant parking

spaces. The limited availability of vacant parking spaces often results in

traffic congestion, as well as making a driver frustrated infinding an

available parking space. In fact, it is one of the main problems which result

to traffic congestion. In the existing system, there is no facility for reserving

the available parking slots in advance. To tackle this problem, the smart

parking system has been proposed. The smart parking system concentrates

on solving the problem of proper parking management by utilizing the

advancement of technologies which will definitely help in alleviating, if not

solving the current traffic problem. It also provides the facility for the user

to reserve the available parking space through an android application. Most

of the smart parking systems (SPS) proposed in literature over the past few

years provides solution to the design of parking availability information system,

parking reservation system, occupancy detection and management of parking

slot, real-time navigation within the parkingfacility. This report presents an

internet-of things (IoT) based E-parking system that employs an integrated

combination of both hardware and software.

 The term smart parking refers to the technology which allows user to have a

better idea about the number of vacant slots and dynamically reserve for parking

if necessary.

2

1.1 Motivation:

Navigating the congested streets on a daily basis is a tiring experience and drains

all energy from one's body and is a topic that is very common among those that fall

victim to it. However, our true motivation came from a discussion where we were

talking about the future prospects of IoT and cloud computing in India.

Technological advances have seen no implementation in parking management

systems till date. With the vision of 'Digital India' in mind and all the resources that

will be available to us, we have planned to create an effective smart parking system

that significantly reduces traffic congestion.

1.2 Problem Statement:

The parking management problem can be viewed from several angles. The major

problems include

 Limited number of parking slots.

 Difficulties in knowing the availability of slots.

 Unable to reserve the slots in advance.

 Tendency to park illegally on the roads.

 Inability to locate nearest parking area.

1.3 Solution:

The following solutions can be provided for an effective smart parking system.

 Monitoring of the number of free and occupied parking spaces

 Informing parking slot users about the parking slot status

 Providing reservation facility in a wider area

 Providing guidance to the user about the nearest parking slot through a

mobile application. This information can also be used for further analysis.

 3

CHAPTER 2

LITERATURE SURVEY

 This chapter deals with the outline for existing methods for parking system

and how smart parking system has evolved in these years. Understanding and

improving the parking system can help with better urban planning. 98% of

automobile trips within the Los Angeles metropolitan area start or end with free

parking (California household travel survey, 2013). Most of the drivers ever

abandoned their trips because of annoying and endless parking searches and some

drivers park their cars on unauthorized areas (Association for European Transport

2006). Accordingly, if drivers can have real-time parking availability information,

they will be able to adjust their traveling schedule without spending time cruising

the city in vain. Many cities have started smart parking projects. Smart parking is a

way to help drivers find more efficiently satisfying parking spaces through

information and communications technology. Cities with more on-street parking

spaces need comparatively to adopt smart parking to avoid drivers cruising for free

parking. In addition, cities deploy smart parking services on an economic initiative

basis. First, drivers can shorten their parking search time, reduce environmental

pollution, reduce costs with less fuel consumption and alleviate traffic congestion

through information from smart parking apps. That also increases public

transportation use rate and cities revenues as well. Second, if drivers can rapidly

find a parking space, the idle time for on-street parking is shorter and the parking

revenues increase. Installing sensors on unauthorized areas where people

frequently park their car can help detect illegal parking and can issue in a penalty

charge, as with electric vehicles and disabled parking stalls. Third, once the traffic

is fluent, it increases urban mobility and expands city’s capacities. It brings more

population.

4

 Idris et al did a survey on smart parking systems using different parking

sensors and the affiliated functionalities, e.g., centralized or opportunistic

information storage systems, park-and-ride facilities, E-parking, automated

parking, reservation systems, parking assist or guidance systems and vehicle

license plate recognition.

 Polycarpou et al presented a survey on driver’s needs for parking infrastructures,

e.g., public parking, driver’s behaviors, parking availability monitoring, guidance

and information systems, reservation systems.

 Faheem et al classified the current smart parking systems and explained their

features: fuzzy-based for human-like intelligence and expertise; wireless sensor-

based for the detection and monitoring of the parking facilities; GPS-based to

provide real time location and guidance systems; vehicular communication for

parking information distribution services among mobile vehicles; vision based for

lot occupancy detection and space recognition. In some studies, the authors

proposed a new algorithm for treatment planning in real-time parking. First, they

used an algorithm to schedule the online problem of a parking system into an

offline problem. Second, they set up a mathematical model describing the offline

problem as a linear problem. Third, they designed an algorithm to solve this linear

problem. Finally, they evaluated the proposed algorithm using experimental

simulations of the system. The experimental results indicated timely and efficient

performance. However, these papers do not mention the resource reservation

mechanism (all parking requirements are derived immediately and are placed in the

queue), the mechanism for assessing the resources system, the mechanism to guide

vehicles to the parking space, the mechanism for handling situations when the

request for service is denied and do not calculate the average waiting time and

average total time that each vehicle spends on the system.

5

 In another study Mainetti , the authors propose an SPS based on the integration

of UHF frequency, RFID and IEEE 802.15.4 Wireless Sensor Network

technologies. This system can collect information about the state of occupancy of

the car parks, direct drivers to the nearest vacant parking spot by using a software

application. However, in this work, the authors have no mathematical equations for

the system architecture and do not create a large-scale parking system. The results

of this paper only implement the proposed architecture; they do not mention the

performance of the parking system. Other researchers have designed architecture

for parking management in smart cities Barone et al. They proposed intelligent

parking assistant (IPA) architecture aimed at overcoming current public parking

management solutions. This architecture provides drivers with information about

on-street parking stall availability and allow drivers to reserve the most convenient

parking stall at their destination before their departure. They use RFID technology

in this system. When a car parks or leaves the IPA parking spot, the RFID reader

and the magnetic loop detect the action and send this information to the unit

controller to update the information on the car park status.

 In other works, authors have designed and implemented an SPS whose bottom

part is composed of ZigBee network which sent pressure information to PC

through a coordinator and then update database Shiyao et al. to solve the

parkingproblem. A part of this system is implemented in the Zigbee network which

sends urgent information to a PC through a coordinator and then updates the

database.

 The application layer can quickly pass the parking information over the Internet,

and use the advantages of a web service to gather all the scattered parking

information for the convenience of those who want to find a parking space. Bonde

et al. aimed to automate the car and the car parking. The paper discusses a project

6

which presents a miniature model of an automated car parking system that can

regulate and manage the number of cars that can be parked in a given area at any

given time based on the availability of parking spaces. The automated parking

method allows the parking and exiting of cars using sensing devices. Entry to or

exit from the car park is commanded by an Android based application. The

difference between the Bonde system and the other existing systems is that the

authors were aiming to make the system as little human dependent as possible by

automating the cars as well as the entire car park; on the other hand, most existing

systems require human intervention (the car owner or other) to park the car.

 A number of parking guidance systems aiming to minimize driver

inconvenience have been reported in the literature over the last decade. The

aforementioned works describe architectures for real-time parking space

availability which take into account information obtained from parking meters or

sensors installed across the parking lot.

 To avoid the cost of using parking sensors, an alternative solution by Lu et.al

performs parking reservation by exploiting the capabilities of vehicular ad hoc

networks (VANETS). VANETs utilize wireless communication enabling cars to

communicate with each other and with the roadside infrastructure. The main

drawback of such technology is that it requires special equipment to be installed in

cars and the roadside; it is anticipated that such deployment will take some time

and therefore aforementioned approach is not realistically implementable at

present.

7

CHAPTER 3

EMPTY SLOT DETECTION USING IMAGE PROCESSING

3.1 General schematic block diagram

 As depicted in the figure 3.1, the image is acquired using a fixed lens camera.

The captured image is given to MATLAB for processing. The empty and occupied

parking slots are detected using MATLAB. The output from MATLAB is forward

to mobile application through cloud (Thingspeak) and to Arduino through

Bluetooth. The empty slots will be displayed in a seven segment display.

Fig. 3.1 Empty Slot Detection and Display

8

3.2 USB Camera

 USB Cameras are imaging cameras that use USB 2.0 or USB 3.0 technology to

transfer image data. A webcam is a video camera that feeds or streams its image in

real time to or through a computer to a computer network. The video fed from

webcam can also be used to detect empty parking slot. Webcams typically include

lens, an image sensor, support electronics.

Fig. 3.2 USB Web Camera

Table 3.1 USB Camera Specifications

Name 'FRONTECH ECAM USB PC CAMERA'

Resolution 320x240

Available Resolutions {1×9 cell}

Brightness 16

Saturation 1

Sharpness 280

Contrast 120

https://en.wikipedia.org/wiki/Video_camera
https://en.wikipedia.org/wiki/Streaming_media
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Computer_network

9

3.3 Arduino

Arduino is an open-source platform. It consists of both a physical programmable

circuit board (often referred to as a microcontroller) and a piece of software, or

IDE (Integrated Development Environment) that runs on the computer, used to

write and upload computer code to the physical board. The Arduino board is

equipped with sets of digital and analog input/output (I/O) pins that may be

interfaced to various expansion boards or breadboards and other circuits.

Fig. 3.3Arduino Board

3.3.1 Arduino UNO

The Arduino UNO is a microcontroller board based on the Atmega328. It has 14

digital input/output pins (of which 6 can be used as PWM outputs), 6 analog

inputs, a 16 MHz crystal oscillator, a USB connection, a power jack, an ICSP

header, and a reset button. The Uno differs from all preceding boards in that it does

not use the FTDI USB-to-serial driver chip. Instead, it features the Atmega8U2

programmed as a USB-to-serial converter.

10

3.3.2 Features of Arduino UNO

Table 3.2 depicts the features of Arduino UNO

Microcontroller ATmega32

Operating Voltage 5 V

Input Voltage (recommended) 7-12V

Digital I/O Pins 14 (of which 6 provide PWM output)

Analog Input Pin 6

DC Current per I/O Pin 40 mA

Flash Memory 32 KB of which 0.5 KB used by bootloader

SRAM 2 KB (ATmega328)

EEPROM 1 KB (ATmega 328)

Clock Speed 16 MHz

3.3.3 Pin diagram

Fig. 3.4 Arduino Pin Diagram

11

3.3.4 Pin description

GND: Short for ‘Ground’. There are several GND pins on the Arduino, any of

which can be used to ground the circuit.

5 V & 3.3 V: the 5 V pin supplies 5 volts and 3.3 V supplies 3.3 volts.

 Analog pins: The area of pins under the ‘Analog In’ label (A0 through A5 on the

UNO) are Analog In pins. These pins can read the signal from an analog sensor

and convert it into a digital value that we can read.

Digital pins: Across from the analog pins are the digital pins (0 through 13 on the

UNO). These pins can be used for both digital input (like telling if a button is

pushed) and digital output (like powering an LED).

Reset button: the Arduino has a reset button . Pushing it will temporarily connect

the reset pin to ground and restart any code that is loaded on the Arduino.

Power LED indicator: This LED should light up whenever we plug Arduino into

a power source. If this light doesn’t turn on, there’s a good chance something is

wrong.

TX RX LED: TX is short for transmit, RX is short for receive. These markings

appear quite a bit in electronics to indicate the pins responsible for serial

communication. In our case, there are two places on the Arduino UNO where TX

and RX appear -- once by digital pins 0 and 1, and a second time next to the TX

and RX indicator LED’s (12). These LED’s will give us visual indications

whenever our Arduino is receiving or transmitting data (like when we’re loading a

new program onto the board).

12

Main IC: The main IC on the Arduino is slightly different from board type to

board type, but is usually from the ATmega line of IC’s from the ATMEL

company.

Voltage Regulator: The input voltage supply to Arduino is in the range of 9-12

volts. The incoming voltage is regulated to 5 volts.

3.4 Infrared sensor

 An infrared sensor is an electronic device that emits infrared radiations in

order to sense some aspects of the surroundings. An IR sensor can measure the

heat of an object as well as detects the motion. An infrared sensor circuit is one of

the basic and popular sensor module in an electronic device. This sensor is

analogous to human’s visionary senses, which can be used to detect obstacles and

it is one of the common applications in real time. Following are the principles used

in IR sensor:

1. Planck’s radiation law

2. Stephan Boltzmann Law

3. Wein’s Displacement Law

The principle of an IR sensor working as an object detection sensor can be

explained using the following figure. An IR sensor consists of an IR LED and an

IR Photodiode; together they are called as Photo – Coupler or Opto – Coupler.

Fig. 3.5 Working of an IR Sensor

Fig. 3.5 depicts the working of an IR sensor

https://www.elprocus.com/basic-components-used-electronics-electrical/

13

When the IR transmitter emits radiation, it reaches the object and some of the

radiation reflects back to the IR receiver. Based on the intensity of the reception by

the IR receiver, the output of the sensor is defined.

A typical system for detecting infrared radiation is given in the following block

diagram

 Fig 3.6 Block Diagram of a Typical System for Detecting Infrared Radiation

Fig. 3.7 A Typical IR Sensor Module

3.5 Bluetooth (HC-05)

 A Bluetooth technology is a high speed low powered wireless technology link

that is designed to connect phones or other portable equipment together. IEEE

802.15.1 is a specification for the use of low power radio communications to link

phones, computers and other network devices over short distance without wires.

Wireless signals transmitted with Bluetooth cover short distances, typically up to

30 feet (10 meters).

14

Some of the types of Bluetooth module are as follows:

 HC-05

 HC-06 RS232 TTL

 BLE Link Bee

 BLE Mini

 Blue SMiRF

 Bluetooth can be connected up to “eight devices” simultaneously and each device

offers a unique 48 bit address from the IEEE 802 standard with the connections

being made point to point or multipoint.HC-05 module is an easy to use Bluetooth

SPP (Serial Port Protocol) module, designed for transparent wireless serial

connection setup. The Bluetooth module HC-05 is a MASTER/SLAVE module.

By default the factory setting is SLAVE. The Role of the module (Master or Slave)

can be configured only by AT COMMANDS. The slave modules cannot initiate a

connection to another Bluetooth device, but can accept connections. Master

module can initiate a connection to other devices. The user can use it simply for a

serial port replacement to establish connection between MCU and GPS, PC to your

embedded project etc.

Fig. 3.8 Pin Diagram of a Bluetooth Module

15

3.6 Light Emitting Diode

Light emitting diodes (LEDs) are semiconductor light sources. The light emitted

from LEDs varies from visible to infrared and ultraviolet regions. They operate on

low voltage and power. LEDs are one of the most common electronic components

and are mostly used as indicators in circuits. They are also used for luminance and

optoelectronic applications. Based on semiconductor diode, LEDs emit photons

when electrons recombine with holes on forward biasing. The two terminals of

LEDs are anode and cathode and can be identified by their size. The longer leg is

the positive terminal or anode and shorter one is negative terminal.

Fig. 3.9 Light Emitting Diode

3.7 Seven Segment Display

 The 7-segment display, as depicted in fig. 3.10 , consists of seven LEDs (hence

its name) arranged in a rectangular fashion. The seven segment display is the most

common display device used in many gadgets, and electronic appliances like

digital meters, digital clocks, microwave oven and electric stove, etc. Each of the

seven LEDs is called a segment because when illuminated the segment forms part

of a numerical digit (both Decimal and Hex) to be displayed. An additional 8th

LED is sometimes used within the same package thus allowing the indication of a

decimal point, (DP) when two or more 7-segment displays are connected together

to display numbers greater than ten. Seven segments are indicated as A-G and the

16

eighth segment is indicated as H. These segments are arranged in the form of 8

which is shown in the seven segment display circuit diagram. As each LED has

two connecting pins, one called the “Anode” and the other called the “Cathode”,

there are therefore two types of LED 7-segment display namely,

 Common Cathode (CC)

 Common Anode (CA)

Fig. 3.10 Pin Diagram of a Seven Segment Display

Fig. 3.11 depicts the connection from MATLAB to Arduino to Bluetooth

Fig. 3.11 Connection From MATLAB To Arduino Using Bluetooth

17

3.8 MATLAB

MATLAB (MATrix LABoratory) is a multi-paradigm numerical

computing environment and proprietary programming language developed

by Math Works. MATLAB allows matrix manipulations, plotting of functions and

data, implementation of algorithms, creation of user interfaces, and interfacing

with programs & using other languages like c, c#, java and python. It integrates

computation, visualization, and programming in an easy-to-use environment where

problems and solutions are expressed in familiar mathematical notation.

Typical uses include:

 Math and computation

 Algorithm development

 Modelling, simulation, and prototyping

 Data analysis, exploration, and visualization

 Scientific and engineering graphics

 Application development

MATLAB is an interactive system whose basic data element is an array that does

not require dimensioning. This allows you to solve many technical computing

problems, especially those with matrix and vector formulations, in a fraction of the

time it would take to write a program in a scalar non-interactive language such as

C or FORTRAN. MATLAB was originally written to provide easy access to

matrix software developed by the LINPACK and EISPACK projects, which

together represent the state-of-the-art in software for matrix computation.

MATLAB has evolved over a period of years with input from many

users.MATLAB features a family of application-specific solutions called

toolboxes. Very important to most users of MATLAB, toolboxes allow you

18

to learn and apply specialized technology. Toolboxes are comprehensive

collections of MATLAB functions (M-files) that extend the MATLAB

environment to solve particular classes of problems. Areas in which toolboxes are

available include signal processing, control systems, neural networks, fuzzy logic,

wavelets, simulation, and many others. In MATLAB, the IPT is a collection of

functions that extends the capability of the MATLAB numeric computing

environment. It provides a comprehensive set of reference-standard algorithms and

workflow applications for image processing, analysis, visualization and algorithm

development. It can be used to perform image segmentation, image enhancement,

noise reduction, geometric transformations, image registration and 3D image

processing operations. Many of the IPT functions support C/C++ code generation

for desktop prototyping and embedded vision system deployment.

3.8.1 Image processing

 Digital image processing is the use of computer algorithms to create, process,

communicate, and display digital images. Digital image processing algorithms can

be used to:

 Convert signals from an image sensor into digital images

 Improve clarity, and remove noise and other artifacts

 Extract the size, scale, or number of objects in a scene

 Prepare images for display or printing

 Compress images for communication across a network

Image Processing Toolbox™ in MATLAB provides a comprehensive set of

reference-standard algorithms and workflow apps for image processing, analysis,

visualization, and algorithm development.

https://uk.mathworks.com/help/images/image-type-conversions.html
https://uk.mathworks.com/discovery/image-enhancement.html
https://uk.mathworks.com/discovery/image-analysis.html

19

Following are the functions performed using image processing toolbox:

 image segmentation,

 image enhancement,

 noise reduction,

 geometric transformations,

 image registration, and

 3D image processing.

3.8.2 Digital image

 A digital image may be defined as a two-dimensional function f(x, y), where

‘x’and ‘y’ are spatial coordinates and the amplitude of ‘f’ at any pair of coordinates

Is called the intensity of the image at that point. When ‘x,’ ‘y’ and amplitude values

of ‘f’ are all finite discrete quantities, the image is referred to as a digital image.

Digitizing the coordinate values is referred to as ‘sampling,’ while digitizing the

amplitude values is called ‘quantization.’ The result of sampling and quantization

is a matrix of real numbers.

A digitized image is represented as:

Each element in the array is referred to as a pixel or an image element.

20

3.8.3 Empty slot detection

Fig. 3.12 Block Diagram Representing Empty Slot Detection

3.8.4 Image processing algorithm

 Images are acquired from the parking area with the help of a fixed camera. The

captured image is segmented into frames. Then from each segment a key frame is

extracted and further processing is applied on this key frame, to reduce the

computational complexity.

 In the initial stage, a certain number of images are captured and their average is

calculated to make an averaged background reference image. This reference image

does not contain any cars. The main purpose is to identify the parking slots in the

image. The camera which is used to take the images is fixed at a certain position

and it faces a fixed direction all the time.

21

Fig. 3.13 Reference Image

 Image segmentation is the process of partitioning the digital image into various

segments in order to change the representation of the image into something

meaningful which is easier to analyze. The RGB image acquired is then converted

to gray-scale image and then binary image is created in the Image segmentation

module.

Fig. 3.14 Grayscale Image of the Captured Image

 Fig. 3.15 shows the gray scale image of the parking space with cars. From the

resulting gray-scale image, binary image is obtained using thresholding technique.

The binary image contains all the information about the position and shape of

interest. The threshold level is set in such a way that the objects of interest are

made into white and the rest of the image black.

22

 The binary image contains a lot of noise which is removed using

morphological operations such as dilation, erosion etc. The objective of

enhancement is to process an image so that result is more suitable than the original

image for the specific application.

 The edges in the captured image are detected, features are extracted and finally

compared with the reference image. Fig. 3.16 depicts the processed slots and the

empty slots are depicted in fig. 3.17.

Fig. 3.15 Empty and Occupied Slots

Fig. 3.16 Display of Empty Slots

23

CHAPTER 4

CLOUD BASED PARKING SLOT MANAGEMENT

4.1 Internet of Things

 The internet of things, or IoT, is a system of interrelated computing devices,

mechanical and digital machines, objects, animals or people that are provided with

unique identifiers (UIDs) and the ability to transfer data over a network without

requiring human-to-human or human-to-computer interaction. Organizations in a

variety of industries are using IoT to operate more efficiently, better understand

customers to deliver enhanced customer service, improve decision-making and

increase the value of the business. An IoT ecosystem consists of web-enabled

smart devices that use embedded processors, sensors and communication hardware

to collect, sent and act on data they acquire from their environments. IoT

devices share the sensor data they collect by connecting to an IoT gateway where

data is either sent to the cloud to be analyzed locally. The device do most of the

work without human intervention, although people can interact with the devices -

for instance, to set them up, give them instructions or access the data. The

connectivity, networking and communication protocols used with these web-

enabled devices largely depend on the specific IoT applications deployed.

4.1.1 Thingspeak API

Thingspeak is an Internet of things platform that lets you collect and store sensor

data in the cloud and develop IoT applications. The Thingspeak IoT platform

provides apps that let you analyze and visualize your data in MATLAB, and the act

on the data. Sensor data can be sent to Thingspeak from Arduino, RaspberryPi and

other hardware.

24

4.1.2 Thingspeak features

 Collect data in private channels

 Share data with public channels

 MATLAB analytics

 Alerts and event scheduling

 Apps integration

4.1.3 Creating a channel in Thingspeak

 Sign in to Thingspeak using your MathWorks Account, or create a

new account

 Click Channels > My Channels.

Fig. 4.1 Thingspeak Login Page

 The Fig. 4.2 depicts the Thingspeak login page

 On the Channels page, click New Channel.

 Create a new channel with one field label

Fig. 4.2 Status of the Channel

 The status of the channel is depicted in the Fig. 4.3

25

 Get the API Key

Fig. 4.3 API Keys

The Fig. 4.3 denotes the obtained API keys.

The processed parking slot status is sent to Thingspeak through MATLAB using

the following code

thingspeakWrite(720092,'Fields',[1,2,3,4,5,6],'Values',a,'WriteKey','GFWSONWV

SDA816JG');

x=thingspeakRead(720092,'Fields',[1,2,3,4,5,6],'ReadKey','P87JMMNWBRTB780

G', 'OutputFormat','table')

The value updated in the field is given by Fig. 4.4 and Fig. 4.5.

Fig. 4.4 Field 1 Data

26

Fig. 4.5 Field 2 Data

4.2 MIT App Developer

 MIT App Inventor is a web-based tool for building Android apps. This is

often referred to as visual programming, which means the user is able to

perform programming tasks without entering any computer code. App Inventor

is actively managed and developed by MIT’s Mobile Learning Lab (the project

was originally built by Google). App Inventor is a free, cloud-based service that

allows you to make your own mobile apps using a blocks based programming

language. You access App Inventor using a web browser (Chrome, Firefox and

Safari). The work takes place in two key sections of App Inventor: the Designer

and the Blocks Editor. In the Designer, what actions the app will perform and

how it will look will be decided. The programming takes place in the Blocks

Editor. There the app is instructed what it should do and give specific

instructions for making that happen. App Inventor also offers a method for

using the app in real time while performing work on it: the AI Companion

app. The Companion app also works wirelessly, so it is not necessary to

physically connect your phone to a computer while working in App

Inventor. Most IoT projects need a user interface and while IFTTT and DO

Buttons work well, sometimes you want something a bit more versatile. It allows

27

newcomers to computer programming to create software applications for the

Android operating system (OS). It uses a graphical interface, very similar to

Scratch and the Star Logo TNG user interface, which allows users to drag-and-

drop visual objects to create an application that can run on Android devices. In

creating App Inventor, Google drew upon significant prior research in educational

computing, as well as work done within Google on online development

environments. App Inventor also supports the use of cloud data via an

experimental Firebase DB component.

4.2.1 Procedure

 To begin, launch your browser and go to appinventor.mit.edu. The

home page includes the portal to the App Inventor tool, along with many

online tutorials and other helpful materials.

Fig. 4.6 MIT App Inventor Sign In Window

https://en.m.wikipedia.org/wiki/Computer_programming
https://en.m.wikipedia.org/wiki/Application_software
https://en.m.wikipedia.org/wiki/Android_(operating_system)
https://en.m.wikipedia.org/wiki/Scratch_(programming_language)
https://en.m.wikipedia.org/wiki/StarLogo_TNG
https://en.m.wikipedia.org/wiki/User_interface
https://en.m.wikipedia.org/wiki/Drag-and-drop
https://en.m.wikipedia.org/wiki/Drag-and-drop
https://en.m.wikipedia.org/wiki/Cloud_database
https://en.m.wikipedia.org/wiki/Firebase#Realtime_Database

28

4.2.2 Signing in

 To begin a session with App Inventor, click the Create button at the top

of the home page.

Fig. 4.7 MIT App Inventor Home Page

4.2.3 Designer

 App building begins in the Designer. Here the user Interface, or the

“look and feel” of the app can be created. The components needed to

receive input from the user, as well as the components needed to display

output or information to the user can also be added. The Designer is where

in which non-visible components the app will use, such as the dialer, GPS,

or SMS are specified.

Fig. 4.8 MIT App Inventor Designer Window

29

4.2.3 Blocks editor

 The Blocks Editor is where an app’s behavior is programmed. Here, the

commands that do the work of the app will be added.

Fig. 4.9 MIT App Inventor Block Editor Window

4.2.4 The AI2 companion app

 App Inventor has a useful tool for continuously seeing the app in

real time on an Android device during each step of the development

process. When an app is being built, the computer and Android

device must be connected to the same wireless network (the desktop

machine might have a wired connection).

Fig.4.10 Android Device Homepage

30

 One can then type in a six-digit code or scan the QR code with ones device,

using the App Inventor app. Doing so brings up a live view of in the

application. As elements are added to it, with the MIT App Inventor

software, those changes are reflected in real time on your device.

Fig. 4.11 Displaying Empty Fig. 4.12 Captured Image

and Occupied Slots

When the user clicks check button , the app displays the occupied and empty slots .

In the Fig. 4.11, the 2nd slot is occupied and the remaining slots are empty.

31

 Fig. 4.13 Displays the Reserved Slots

The Fig. 4.13 depicts the reserved slots. Here the user has reserved 5th slot.

Empty slots

Occupied slots

Reserved slots

32

CHAPTER 5

RESULTS AND FUTURE DISCUSSION

5.1 Conclusion:

 The ease of parking system is quite a challenge in modern days. Since the

advent of industrialized cities, number of cars has been increasing and day by day

people are facing bigger trouble while trying to manage their cars into a parking

lot. This scenario of parking crisis gives rise to new solutions with the help of

Internet of things (IOT) thus managing car parking systems. Our paper addresses

the crisis of car parking across a remote city and comes out with an IoT based

assistant mobile application system. The proposed project provides real time

information of a car parking lot and is able to coordinate with the mobile

application thus giving user the information of the empty parking slots.

5.2 Limitations:

 Only limited surface is considered for vacant slot parking, challenges will be

greater if larger parking area is considered.

 The problem with USB camera is that the angle of capturing is difficult for

accurate positioning.

 If a person or an object is placed in a slot, due to filtering issues, error may

occur. So noises should be filtered perfectly.

33

5.3 Future Scope:

 Navigation to the nearest parking area: The user can be

navigated to the nearest parking area from his current location.

 Multi-Platform application: The Android application that has

been developed can re-built in a multi-platform structure so that

iPhone users can also use it.

 Cost estimation: The cost can be estimated based on the duration

for which the car is parked and the information can be given to the

user.

34

APPENDICES

MATLAB CODE

%%

% SLOT DETECTION PROJECT

clc;

% Insert Camera capture function

% Converting to Gray Scale

ref_img=imread('ref.jpg'); % Empty slots Image as reference

ref_img=rgb2gray(ref_img);

cap_img=imread('2.jpg'); % Captured Image

cap_img=rgb2gray(cap_img);

[rr,rc]=size(ref_img);

[cr,cc]=size(cap_img);

% Detecting Edges - im1

im1=edge(cap_img);

sel=strel('disk',1);

im1=imdilate(im1,sel);

% Cropping the image Need to tune according to the setup

c_ref1=cropimg(cap_img);

r_ref1=cropimg(ref_img);

figure(1)

imshow(c_ref1);

figure(2)

imshow(r_ref1);

35

%%

% Changes according to layout

% Slot Coordinates [col_minrow_min width height]

% No. of slots

nos=6;% slotco =[103.0000 14.0000 217.0000 111.0000;

% 340.0000 5.0000 208.0000 129.0000;

% 573.0000 8.0000 180.0000 130.0000;

% 55.0000 296.0000 241.0000 167.0000;

% 330.0000 281.0000 249.0000 183.0000;

% 595.0000 278.0000 235.0000 183.0000];

slotco=[44 4 69 68;

 123 2 74 72;

 203 5 68 70;

 22 130 78 96;

 116 129 87 102;

 211 129 80 97];

slotco1=[22 130 78 96;

 116 129 87 102;

 211 129 80 97;

 203 5 68 70;

 123 2 74 72;

 44 4 69 68];

% Creating reference data

36

for i=1:1:nos

 slot=slotco1(i,:);

slot_img=slotdetect(r_ref1,slot);

 % hist_img=histogram(slot_img);

 im1=edge(slot_img);

sel=strel('disk',1);

im1=imdilate(im1,sel);

figure(4);

subplot(2,3,i);

imshow(im1);

refdata(i)=std(std(im1));

meandata(i)=mean(mean(im1));

vardata(i)=var(var(im1));

normdata(i)=sum(sum(im1));

rdata=(refdata+meandata+vardata+normdata)/2;

end

 for i=1:1:nos

 slot=slotco1(i,:);

slot_img=slotdetect(c_ref1,slot);

 % hist_img=histogram(slot_img);

 im1=edge(slot_img);

sel=strel('disk',1);

im1=imdilate(im1,sel);

figure(3);

37

subplot(2,3,i);

imshow(im1);

capdata(i)=std(std(im1));

cmeandata(i)=mean(mean(im1));

cvardata(i)=var(var(im1));

cnormdata(i)=sum(sum(im1));

cdata=(capdata+cmeandata+cvardata+cnormdata)/2;

 end

val=cdata-rdata;

for i=1:1:nos

 if val(i)<0

val(i)=val(i).*(-1);

 end

end

val=val;

[osr,osc]=find(val<100);

fprintf('Empty Slot: %d\n',osc);

a=val>100;

disp(a);

thingSpeakWrite(720092,'Fields',[1,2,3,4,5,6],'Values',a,'WriteKey','GFWSONWV

SDA816JG');

x =

thingSpeakRead(720092,'Fields',[1,2,3,4,5,6],'ReadKey','P87JMMNWBRTB780G'

,'OutputFormat','table');

38

4.2.8 MIT app inventor block editor window:

39

40

REFERENCES

1. https://ieeexplore.ieee.org/document/8391155

2. https://ieeexplore.ieee.org/document/8282631

3. https://www.researchgate.net/publication/303842610_IoT_based_Smart_Par

king_System

4. https://create.arduino.cc/projecthub/102513/iot-based-parking-system-

b6a947

5. Rafael C. Gonzalez, Richard E.Woods, Steven L. Eddins. (2004)’digital

image processing using MATLAB’

6. https://create.arduino.cc/projecthub/KaustubhAgarwal/smart-parking-bdfa99

7. https://in.mathworks.com/discovery/digital-image-processing.html

8. https://in.mathworks.com/help/thingspeak/thingspeakwrite.html

9. http://appinventor.mit.edu/explore/ai2/beginner-videos.html

10. https://www.oreilly.com/library/view/learning-mit-

app/9780133799286/ch08lev2sec3.html

11. https://in.mathworks.com/matlabcentral/answers/124487-connecting-

arduino-with-matlab-through-bluetooth

12. Anil K. Jain ‘Fundamentals Of Digital Image Processing’ , Chapter 5.11 pp

163-174.Prentice Hall Inc., prentice hall international edition,1989

https://ieeexplore.ieee.org/document/8391155
https://ieeexplore.ieee.org/document/8282631
https://www.researchgate.net/publication/303842610_IoT_based_Smart_Parking_System
https://www.researchgate.net/publication/303842610_IoT_based_Smart_Parking_System
https://create.arduino.cc/projecthub/102513/iot-based-parking-system-b6a947
https://create.arduino.cc/projecthub/102513/iot-based-parking-system-b6a947
https://create.arduino.cc/projecthub/KaustubhAgarwal/smart-parking-bdfa99
https://in.mathworks.com/discovery/digital-image-processing.html
https://in.mathworks.com/help/thingspeak/thingspeakwrite.html
https://www.oreilly.com/library/view/learning-mit-app/9780133799286/ch08lev2sec3.html
https://www.oreilly.com/library/view/learning-mit-app/9780133799286/ch08lev2sec3.html
https://in.mathworks.com/matlabcentral/answers/124487-connecting-arduino-with-matlab-through-bluetooth
https://in.mathworks.com/matlabcentral/answers/124487-connecting-arduino-with-matlab-through-bluetooth

	4.2.3 Designer
	App building begins in the Designer. Here the user Interface, or the “look and feel” of the app can be created. The components needed to receive input from the user, as well as the components needed to display output or information to the user ...
	4.2.3 Blocks editor

