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ABSTRACT 

 

The primary goal of a Battery Management System (BMS) is to operate 

the battery under safe operating conditions within its safety zone. The present 

state of the battery packs gives the amount of energy available in the battery 

which informs us how far the vehicle can be driven before it is recharged.This 

can be known from State of Charge (SOC) and State of Health (SOH) of the 

battery and it has to be accurate for taking the right decision. In this work, the 

main objectives are to estimate the SOC and SOH of the battery efficiently and 

dynamically to increase the Electric Vehicles (EV) longevity by deducing the 

overcharging and over-discharging of a battery. The SOC of the battery will be 

determined using the sigma-point Kalman filter method since the function of the 

battery pack is non-linear. The SOH of the battery is determined using Total-

Least-Squares considering the possible errors to get the most accurate and 

reliable data. This method is recursive in a closed form and allows fading 

memory which reduces the memory requirement. These properties are essential 

to enhance the performance and reliability of the battery; good estimation 

allows us to use the entire battery pack capacity which will, in turn, reduce the 

size and cost of the battery pack. An accurate battery model in a simulation 

platform is very important to design an efficient battery-powered system. Here, 

an equivalent circuit model of a lithium-ion cell is developed, and the SOC and 

SOH estimation algorithm is tested using MATLAB software. 
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CHAPTER 1 

Introduction 

1.1 Battery-Powered Vehicles 

Rising crude oil prices and worldwide awareness of environmental issues 

have resulted in the increased development of energy storage systems. The 

battery is one of the most attractive energy storage systems because of its high 

efficiency and low pollution. Soon, batteries will play a significant role in the 

transportation sector regarding vehicle electrification. Batteries in electric 

vehicles store electricity on board with high-capacity battery packs. That battery 

power is used to run the electric motor and all on-board electronics. The 

performance of EVs can be improved by accurate design and monitoring of the 

level of battery packs. 

By doing so, the overall lifetime of the battery and thus that of the 

Electric Vehicle can be significantly improved. Electrical batteries such as 

Lithium-ion, NiMH have the advantages of high working cell voltage, low 

pollution, low self-discharge rate, and high power density. Batteries are used 

commonly for portable utilities, hybrid electric vehicles, and industrial 

applications. Lithium-ion batteries are enabling a new generation of electrified 

vehicles to be commercialized by global automakers. 

Achieving appropriate levels of product safety is a prerequisite for 

designing an automotive system’s battery. Lithium batteries, like any other 

battery, when operating only deliver some part of the chemical energy stored as 

electrical energy, while the rest of the total energy stored is dissipated as heat 

due to internal resistance mechanisms called ‘over potentials’. The actual 

capacity of a lithium battery is often much higher than the rated capacity, to 

guarantee durability. 
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Lots of research activities are going on, trying to improve different 

aspects of battery technology such as more cycling life, more energy and power 

densities, more safety, less cost, less environmental effects after recycling, and 

so on. Part of this development process is focused on developing efficient 

battery management systems (BMSs). 

1.2 Battery Management Systems (BMS) 

The BMS plays a critical role in battery packs, especially for lithium-ion 

battery chemistry. Protecting the cells from overcharge and over-discharge, 

controlling the temperature at the desired level, prolonging the life of the battery 

pack, guaranteeing overtime safety, and indicating the available power and 

energy of the battery are the key functionalities of a BMS. Two important 

concepts of a BMS are: 

●  State-of-Charge (SOC)  

● State-of-Health (SOH) 

 Battery SOC and SOH are variables that should be determined precisely 

to use the battery optimally and safely. Batteries are time-varying systems that 

behave very differently in various states. In other words, the internal states of a 

battery would indicate to us what to expect from it.  

A BMS is responsible for different tasks such as protecting cells from 

damage, prolonging the life of the battery, and maintaining the battery in a state 

in which it can meet the requirements of the application for which it was 

designed. In one sentence, BMS is for ‘optimal and safe use of a battery by 

monitoring and control’. 

1.3 Battery State Indicators 

The monitoring process consists of real-time measurements of variables 

like current, voltage, and temperature, which are used to calculate some 
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‘unmeasurable’ variables like battery state-of-charge (SOC) and state-of-health 

(SOH). 

1.3.1 State Of Charge 

In simple terms, SOC is defined as an indicator of the remaining battery 

energy. SOC estimation is a fundamental challenge for battery use. The SOC of 

a battery, which is used to describe its remaining capacity, is a very important 

parameter for a control strategy. In general, the SOC of a battery is defined as 

the ratio of its current capacity (Q(t)) to the nominal capacity (Q(n)). The 

nominal capacity is given by the manufacturer and represents the maximum 

amount of charge that can be stored in the battery. The SOC can be defined as 

follows: 

   SOC(t) = Q(t) / Q(n)   ……………………(1.1) 

There are many techniques in the literature developed for battery SOC 

estimation, and a number of them are explained in this chapter. Accurate 

estimation of the SOC remains very complex and is difficult to implement 

because battery models are limited and there are parametric uncertainties. 

Here different approaches are introduced, from simple book-keeping 

techniques, like the integration of the current signal over time, to methods 

that exploit some behavioural challenges during the usage range. While these 

methods theoretically work independently, they can be combined or used 

together to increase the estimation precision. 

The simplest method of battery SOC calculation, called 'coulomb 

counting', works based on the integration of the battery current overtime to 

calculate the amount of energy flowing through the battery. This method is 

generally precise in the short term, but the integration leads to difficulties for 

long-term usage. The addition of small measurement errors or biases over time 
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can lead to large errors in this technique especially in real applications without 

full cycles, using less accurate sensors with more noise. Another issue can be 

the need for a precise initial condition, as this information might not be given at 

any point in practice. Because of these practical limitations, more advanced 

battery SOC estimation techniques have been developed. 

1.3.1.1 Overview of SOC Estimation 

1.3.1.1. a) Direct Measurement 

Direct measurement methods refer to some physical battery properties 

such as the terminal voltage and impedance. Many different direct methods have 

been employed: open circuit voltage method, terminal voltage method, 

impedance measurement method, and impedance spectroscopy method. 

1.3.1.1. b) Open Circuit Voltage Method 

There is approximately a linear relationship between the SOC of the lead-

acid battery and its open-circuit voltage (OCV) given by: 

VOC(t) = a1×SOC(t) +a0     …..……………………....(1.2) 

The OCV method based on the OCV of batteries is proportional to the 

SOC when they are disconnected from the loads for a period longer than two 

hours. However, such a long disconnection time may be too long to be 

implemented for the battery. The OCV relationship with SOC was determined 

from applying a pulse load on the Li-ion battery, then allowing the battery to 

reach equilibrium. 
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1.3.1.1. c) Terminal Voltage Method 

The terminal voltage method is based on the terminal voltage drops 

because of the internal impedances when the battery is discharging, so the 

Electro-Motive Force (EMF) of the battery is proportional to the terminal 

voltage. Since the EMF of a battery is approximately linearly proportional to the 

SOC, the terminal voltage of the battery is also approximately linearly 

proportional to the SOC. The terminal voltage method has been employed at 

different discharge currents and temperatures. But at the end of battery 

discharge, the estimated error of the terminal voltage method is large, because 

the terminal voltage of the battery suddenly drops at the end of discharge. 

1.3.1.1. d)  Impedance Method 

Among the techniques which have been employed, impedance 

measurements provide knowledge of several parameters, the magnitudes of 

which may depend on the SOC of the battery. Although the impedance 

parameters and their variations with SOC are not unique for all battery systems, 

it appears to be imperative to perform a wide range of impedance experiments 

for identification and use of impedance parameters for estimating the SOC of a 

given battery. 

1.3.1.1. e)  Impedance Spectroscopy Method 

The impedance spectroscopy method measures battery impedances over a 

wide range of ac frequencies at different charge and discharge currents. The 

values of the model impedances are found by least-squares fitting to measured 

impedance values. SOC may be indirectly inferred by measuring present battery 
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impedances and correlating them with known impedances at various SOC 

levels. 

1.3.1.1. f)  Book-Keeping Estimation 

Book-keeping estimation method uses battery discharging current data as 

input. This method permits to include some internal battery effects as self-

discharge, capacity-loss, which do not influence and discharging efficiency. 

Two kinds of book-keeping estimation methods have been employed: The 

coulomb counting method and the modified Coulomb counting method. 

1.3.1.1. g) Coulomb Counting Method 

The Coulomb counting method measures the discharging current of a 

battery and integrates the discharging current over time to estimate SOC. 

Coulomb counting method is done to estimate the SOC(t), which is estimated 

from the discharging current, I(t), and previously estimated SOC values. SOC is 

calculated by the following equation: 

SOC(t) = SOC(t-1) + (I(t) / Qn)𝛥𝑡   …….........................(1.3) 

1.3.1.1. h) Kalman Filtering Method 

Using real-time measurement road data to estimate the SOC of a battery 

would normally be difficult or expensive to measure. The application of the 

Kalman filter method is shown to provide verifiable estimations of SOC for the 

battery via real-time state estimation. 

Recently, a journal presented a Kalman filter-based SOC estimation 

method for lithium-ion batteries. Experimental results validate the effectiveness 

of the Kalman filter during the online application. Barbarisi et al. presented an 

Extended Kalman filter (EKF) to estimate the concentrations of the main 
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chemical species which are averaged on the thickness of the active material to 

obtain the SOC of the battery, by using the terminal current and voltage 

measurements. 

Based on an Unscented Kalman Filter (UKF) theory and a comprehensive 

battery model, a novel SOC estimation method is proposed. The results show 

that the UKF method is superior to the extended Kalman filter method in SOC 

estimation for batteries. They presented an adaptive UKF method to estimate the 

SOC of a lithium-ion battery for battery electric vehicles. The adaptive 

adjustment of the noise covariance in the SOC estimation process is 

implemented by an idea of covariance matching. Followed by UKF, the Sigma 

Point Kalman Filter (SPKF) is best suited for highly nonlinear systems which 

are robust and reliable for dynamic applications. 

1.3.2 State of Health 

Battery SOH is defined as a quantitative indicator of the healthiness of the 

battery and is determined based on the battery end-of-life definition. Typically, 

a battery's SOH will be 100% at the time of manufacture and will decrease over 

time and use. However, there is not a single definition of battery end-of-life that 

is accepted by all scientists in this area. Consequently, different definitions exist 

in the literature such as “calendar life' which presents the age of a battery as 

months or years. So, battery end-of-life is confirmed based on a period. 

SOH = (Cmax/ Crated) * 100%........................................................... (1.4) 

Where, 

  Cmax - maximum capacity of the cell 

  Crated - rated capacity of the cell 
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The life of a battery is affected by different scenarios of usage. So, 

another definition of battery life has been proposed called 'cycling life’.The age 

of a battery is presented in the sense of battery use depending on the 

charge/discharge profile. So, battery life is calculated based on the number of 

cycles. Such a definition can be used in practice when the load condition is 

consistent and repeating. 

1.3.2.1 Need for health estimates 

Over time, cells in a battery pack will age and their performance will 

degrade. Eventually the cells will reach a point where they no longer meet the 

performance requirements of the battery pack, the pack’s end of life is 

considered. Between a battery pack’s beginning of life and end of life, it is 

important to know the present degradation status of its cells to be able to make 

accurate calculations of state of charge, available energy, and available power. 

Normal aging is only one cause of cell failure. Failures can also occur 

because of cell design faults, poorly controlled manufacturing processes, or 

impurities in the materials used during manufacture, abuse, and uncontrolled 

operations. Cells that have design or manufacturing faults or are abused often 

appear normal for a while and then fail very rapidly. Proper battery management 

will prevent uncontrolled operation while the BMS is active, but has no 

influence over external factors or ambient conditions while the BMS is inactive. 

The focus is on understanding and tracking normal aging processes as 

well as uncontrolled operations in the sense that overvoltage, over temperature, 

and so forth accelerate the normal degradation mechanisms. The battery pack 

can still be used during the period when it is aging normally until its end of life, 

but at reduced levels of performance. Internal faults and abuse, which are 

usually detected using other means and may require shutting down parts or all of 



9 

 

the battery pack for immediate servicing to prevent the propagation of the 

failure. 

 The BMS designer should work closely with the battery-cell 

electrochemists and production engineers to understand all of the probable 

failure mechanisms and their characteristics fully to be able to adapt the 

knowledge from this chapter into their designs. In particular, those quantities 

that reflect a change in the performance that the battery pack can deliver. These 

are indicators of battery-pack SOH. There is no universally agreed-upon 

definition of SOH, but the most commonly estimated quantities used to 

summarize battery pack health include the present total capacity and present 

equivalent series resistance of every cell. Accurate estimates of total capacity 

and equivalent series resistance allow us to compute reliable total energy and 

available power estimates for the battery pack over its service life. 

1.3.2.1. a) Total capacity  

As a battery cell ages, its total capacity Q decreases. In a lithium-ion cell, 

this is due primarily to unwanted side reactions that consume lithium that could 

otherwise be used during charge and discharge of the cell, and to structural 

deterioration of the electrode active materials that eliminate lithium storage 

sites. 

This slow reduction in capacity is often referred to as capacity fade. 

Algorithms that track capacity fade to provide the other battery-management-

system algorithms with up-to-date estimates of every cell’s total capacity are 

required. This knowledge is critical to be able to calculate battery-pack available 

energy accurately, where total capacity is a major contributing factor. If 

coulomb counting is being used for SOC estimation, an accurate estimate of 

total capacity is also needed; however, if Kalman filters are being used instead, 

the state of charge estimates turn out to be fairly insensitive to a poor total-
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capacity estimate since the built-in feedback correction mechanism can 

compensate for moderate errors in the total-capacity estimate. The dependence 

of available power estimates on the value of total capacity also turns out to be 

minimal. 

1.3.2.1. b)  Equivalent Series Resistance (ESR) 

 As a battery cell ages normally, its equivalent series resistance 𝑅0 

increases. This is also due primarily to unwanted side reactions and structural 

deterioration. The side reactions tend to form resistive films on the surface of 

the active material particles that impede the ionic conductivity. Structural 

deterioration serves electronic pathways between particles and decreases the 

electronic conductivity. Having an up-to-date knowledge of equivalent-series 

resistance is important because it turns out to be a major contributing factor to 

the available-power calculation. It can be a major contributing factor to the state 

of charge estimation for some voltage-based methods; however, for Kalman-

filter-based methods, it is a minor factor, and it does not affect coulomb-

counting methods at all. It does not have a significant role in available energy 

estimation. 

1.3.2.1. c) Other cell parameters 

 As the cell ages, other cell-model parameter values will change as well. 

For example, while the open-circuit-potential relationships of each electrode 

remain fixed by the chemistry of the crystal structures, a cell’s overall OCV 

relationship can change due to shifts in the stoichiometric operating windows 

used by each electrode that occurs when capacity is lost due to side reactions 

and structural deterioration. This effect tends not to be large but may need to be 

tracked by future BMS. Other cell-model parameter values almost certainly 

change as well; however, few if any present BMS make efforts to estimate the 
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changes. Overall, changes to the equivalent-series resistance and total capacity 

have the dominant impact on BMS performance. 

1.3.2.2 Negative-electrode aging 

Degradation in the negative electrode is examined, with ageing results 

visible on three scales. First, any ageing happens at the interface between the 

solid and the electrolyte, at the surface of the electrode active-material particles. 

Second, other ageing processes occur within the active material particles 

interiors. Third, modifications to the active materials, conductive additives, 

binder materials, current collectors, porosity, and other components of the 

overall composite electrode structure may occur as a result of ageing. Table 1.1 

states the causes and effects of the negative electrode aging. 
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Table 1.1 - Principal aging mechanisms at the negative electrode 
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1.3.2.3 Positive-electrode aging 

 As with the negative electrode, aging occurs in three locations in the 

positive electrode: at the surface of the particles, within the active material 

particles themselves, and in the bulk positive electrode. 

1.3.2.3. a) Positive electrode aging at the surface of particles 

In the positive electrode, researchers have found that a film can grow on 

the surface of the active materials and the particles as well. In part, this is due to 

a chemical reaction between the solvent in the electrolyte and the positive-

electrode active materials; however, this mechanism is not as pronounced as it is 

in negative electrodes. A bigger factor is the dissolution of metals from the 

electrode crystal structures into the electrolyte and products formed from these 

metals that can reprecipitate onto the particle surface as a high resistance film. 

This dissolution is accelerated by hydrofluoric acid in the electrolyte, initiated 

by trace amounts of water that combine with the LiPF6 salt. 

1.3.2.3. b) Positive electrode aging in bulk  

When lithium intercalates into and deintercalation out of the positive 

electrode active particles, stresses cause strains known as phase transitions that 

distort the shape of the crystal structure of the electrode materials without 

changing the overall structure itself. Transitions in phase are caused by the 

presence or absence of lithium in the storage sites, leading to different local 

molecular forces. Some of these phase transitions are normal and reversible, but 

others lead to collapse of the electrode structure and rapid capacity decrease due 

to the resulting loss of lithium storage sites. This is most common when 

overcharging a cell: too much lithium is removed from the positive electrode, 

which causes the lithium pathways to collapse. 
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1.3.2.3. c) Positive electrode aging in composite electrode 

The composite positive electrode experiences degradation in the same 

ways as the composite negative electrode. Over time, the binder can decompose, 

the conductive additives can become oxidized, the current collector can become 

corroded, and contact among particles and between particles and the current 

collector can become lost due to volume changes.Table 1.2 shows the aging 

effects of the positive electrode. 
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Table 1.2 - Principal aging mechanisms at positive electrode
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CHAPTER 2 

Literature Review 

B. S. Bhangu et al., in their paper “Nonlinear Observers for Predicting 

State-of-Charge and State-of-Health of Lead-Acid Batteries for Hybrid-Electric 

Vehicles” [1] had presented an approach to estimating the SOC and SOH of a 

cell pack by the application of a KF and EKF respectively, only the 

measurements of cell terminal quantities are used as input. 

Padmanaban Dheenadhayalan et al., in their work “A Novel Method for 

Estimation of State of Charge of Lithium-ion Battery using Extended Kalman 

Filter” [2] showed a demonstration and explanation of EKF which serves to 

accurately estimate the value of SOC under noise is carried out. An equivalent 

circuit of lithium-ion batteries was identified and Extended Kalman Filter was 

designed for SOC estimation purposes. Estimation of SOC was simulated by 

different methods and the accuracy of the designed EKF was validated by 

statistical analysis. Finally, they conclude that EKF is an effective approach to 

estimate the SOC for lithium-ion batteries as it has a high level of immunity 

towards noise that occurs during vehicle operation. 

He Lin et al., in their paper, “State of charge estimation by finite 

difference extended Kalman filter with HPPC parameters identification” [3] had 

proposed a finite-difference extended Kalman filter (FDEKF) with Hybrid Pulse 

Power Characterization (HPPC) parameters identification to estimate the SOC. 

The finite difference (FD) algorithm is beneficial to compute the partial 

derivative of a nonlinear function, which can reduce the linearization error 

generated by the extended Kalman filter (EKF) both constant current discharge 

(CCD) and urban dynamometer driving schedule (UDDS), are utilized to 

validate the FDEKF algorithm. Comparing convergence rate and accuracy 
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between the FDEKF and the EKF algorithm, it can be seen that the former is a 

better candidate to estimate the SOC. 

Wei He et al., in their work “State of charge estimation for Li-ion 

batteries using neural network modeling and unscented Kalman filter-based 

error cancellation” [4] had developed an artificial neural network-based battery 

model to estimate the SOC, based on the measured current and voltage. An 

unscented Kalman filter is used to reduce the errors in the neural network-based 

SOC estimation. 

Zhiwei He et al., in their work “Battery Model Parameters Estimation 

with the Sigma Point Kalman Filter” [5] had developed a Sigma Point Kalman 

Filter based battery model parameters estimation method. The parameters can be 

estimated accurately while efficiently. Compared to the classical least squares 

method, this method consumes much less memory and calculation time, which 

makes it suitable for embedded applications. 

Khalid Khan et al., in their paper “Real-Time Application of Battery State 

of Charge and State of Health Estimation” [6] presented a method of estimating 

SOC and SOH through the incorporation of current integration, voltage 

translation, and Ah-throughput. SOC estimation utilizing current integration is 

inadequate due to the accumulation of errors throughout usage. Thus voltage 

translation of SOC is applied to rectify the current integration method which 

improves the accuracy of estimation. Voltage translation data is obtained by 

subjecting the battery to a hybrid pulse power characterization (HPPC) test. The 

Battery State of Health was determined by a semi-empirical model combined 

with an accumulated Ah-throughput method. Battery state of charge was 

employed as an input to estimate damages accumulated to battery aging through 

a real-time model. This method allows us to monitor battery operating 

conditions instantaneously. 
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ZenabMoussalli et al., in their work “State of Charge estimation 

algorithms in Lithium-ion battery-powered Electric Vehicles” [7] discussed the 

different methods of SOC estimation and their weakness and strengths. Finally, 

they have proposed that the SOC of the battery be kept within appropriate 

limits; 20%≤ SOC(t) ≤95% to keep the battery performance. 

Kong Soon Ng et al., in their paper “Enhanced coulomb counting method 

for estimating state-of-charge and state-of-health of lithium-ion batteries” [8] had 

proposed an enhanced estimation method based on coulomb counting, is 

proposed to improve the estimation accuracy. 

 Chi Nguyen Van and Thuy Nguyen Vinh, in their paper “SOC 

Estimation of the Lithium-Ion Battery Pack using a Sigma Point Kalman Filter 

Based on a Cell’s Second-Order Dynamic Model” [9] discussed the state of 

charge (SOC) estimation of a lithium-ion battery pack (LiBP) connected by 

some cells in series and parallel. The voltage noise, noise, and current bias of 

current through the LiBP are taken into account in the SOC estimation problem.  

The second dynamic order model of the cell is used to estimate the SOC of the 

LiBP. By applying the sigma point Kalman filter (SPKF), the average SOC of 

the pack and bias current of current measurement are estimated by first 

estimator; the second estimator estimates the SOC differences of the cell 

modules from average SOC of the pack. The SOC of the cell modules is the sum 

of the average SOCs of the pack and the SOC differences. By only using two 

estimators, the calculation complexity for SOC estimation is reduced; this is 

very useful for the LiBP, which has the number of cells connected in a large 

series. 

Sabine Piller et al., in their paper “Methods for state-of-charge 

determination and their applications” [10] had discussed methods for SOC 

determination and a relationship between the advantages of different methods 

and most common applications. Finally, they have suggested that Ah counting is 
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the most direct and transparent method and quite easily implemented and also 

gives satisfyingly accurate results for short-time applications, especially if used 

in the range of low to medium SOC. 

Venu Sangwan et al., in their paper “Estimation of Model Parameters and 

State-of-Charge for Battery Management System of Li-ion Battery in EVs” [11] 

presented a method of identifying the unknown parameters of the battery model 

using the least square algorithm for Dynamic Stress Test (DST), validation of 

estimation is conducted for Federal Urban Driving Schedule (FUDS) and 

concluded that the error between predicted terminal voltage form model and 

voltage from DST profile was less than 0.08V for defined conditions. SOC 

estimation, recursive Bayesian estimation method based Extended Kalman 

Filtering (EKF), and Sigma-Point Kalman Filtering (SPKF) approaches were 

adopted. To quantify the performance of the estimators, Root Mean Square 

Error (RMSE) and execution time at different temperatures were evaluated. 

Finally, they conclude that the maximum error in the case of EKF is 2.43% 

whereas SPKF is 1.2% and the maximum execution time taken by EKF is 3.57 

sec whereas SPKF is 4.53 sec. The results reported that SPKF provides accurate 

and robust SOC estimation in comparison to EK. 

Nikolaos Wassiliadisa et al., in their paper “Revisiting the dual extended 

Kalman filter for battery state-of-charge and state-of-health estimation: A use-

case life cycle analysis” [12] had developed a dual extended Kalman filter 

(DEKF), it consists of two extended Kalman filters (EKFs), that synchronously 

estimate both the battery states and parameters. This work investigates the 

DEKF performance from a high-level perspective, involving different load 

dynamics and SOH stages. A numerical optimization-based approach for the 

crucial filter parameterization is employed. The DEKF partly improves the 

accuracy of the SOC estimation compared to the simple EKF over battery 

lifetime within the operational limits of an automotive application. The work 
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investigates the DEKF performance from a high-level perspective, involving 

different load dynamics and SOH stages. A numerical optimization-based 

approach for the crucial filter parameterization is employed. Finally, they 

conclude that the DEKF partly improves the accuracy of the SOC estimation 

compared to the simple EKF over battery lifetime within the operational limits 

of an automotive application. 

Bingjun Xiao et al., in their work “A Universal State-of-Charge 

Algorithm for Batteries” [13] had developed an efficient yet accurate OCV 

algorithm that applies to all types of batteries. They have used a linear system 

analysis but without a circuit model, the OCV is calculated based on the 

sampled terminal voltage and discharge current of the battery. The algorithm is 

numerically stable, robust to history-dependent error, and obtains SOC with less 

than 4% error compared to a detailed battery simulation for a variety of 

batteries. 

Fei Zhang et al., in their paper “A Battery State of Charge Estimation 

Method with Extended Kalman Filter” [14] had proposed a battery State of 

Charge (SOC) estimation method based on the extended Kalman filter. The 

proposed model assumption matches better with the real battery behaviour. A 

battery is modelled as a nonlinear system, with the SOC defined as a system 

state and the extended Kalman filter is applied to estimate SOC directly for a 

lithium battery pack. 

Wenhui Zheng et al., in their paper “State of Charge Estimation for Power 

Lithium-Ion Battery Using a Fuzzy Logic Sliding Mode Observer” [15] proposed 

a new fuzzy logic sliding mode observer for SOC estimation. The second-order 

resistor-capacitor equivalent circuit model is used to describe the 

discharging/charging behaviour of the battery. The exponential fitting method is 

applied to determine the parameters of the model. The fuzzy logic controller is 

introduced to improve the performance of the sliding mode observers forming 
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the fuzzy logic sliding mode observer (FLSMO). Finally conclude that the 

FLSMO algorithm has better performance than the sliding mode observer and 

the extended Kalman filter in terms of robustness against measurement noise 

and parameter disturbances. 

Yuan Zou et al., in their work “Combined State of Charge and State of 

Health estimation over lithium-ion battery cell cycle lifespan for electric 

vehicles” [16] developed a first-order RC(resistor-capacitor) model to analyse the 

SOC dependency of the nominal parameters and the performance degradation of 

the nominal model over the battery lifetime is quantified. Two extended Kalman 

filters with different time scales are used for combined SOC/SOH monitoring. 

 

 

 

 

 

 

 

 

  



22 

 

CHAPTER 3 

Equivalent Cell Model 

3.1 Simulation of Battery Cells 

One of the important functions of a battery management system is to 

compute estimates of a variety of fundamental quantities such as SOC, SOH, 

remaining power, and available energy. The methods to produce these estimates 

require highly accurate and computationally simple mathematical sets of 

equations or models of cell current/voltage dynamics. These applications require 

insights into cell internal electrochemical dynamics. Two fundamentally 

different kinds of models can be used for these applications; physics-based 

model and equivalent-circuit model. Either of these models can be used to 

describe the operation of lithium-ion battery cells. 

3.1.1 Physics-Based Models (PBMs) 

Physics-based models are developed based on the observation of 

electrochemical variations that occurs in a lithium-ion cell during its operation. 

The governing equations of this model are derived from physical laws that 

describe the internal cell electrochemical variables in response to an input 

stimulus. These variables can then be used to compute the cell voltage. This 

model can predict a wide range of operating conditions and can predict the 

internal electrochemical state of the cell. But it has convergence issues as it is 

expressed as coupled partial-differential equations. 

3.1.2 Equivalent-Circuit Models (ECMs) 

ECMs use an electrical circuit analogy to explain the behaviour of the 

lithium-ion cell. This makes use of simple electrical equations to explain the 

complex electrochemical reactions. Laboratory tests are conducted to collect 
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data for optimizing the circuit element parameter values. These data are used to 

model the cell to closely match the current/voltage behaviours of the true cell. 

Because ECMs amount to an empirical fit of data collected from a cell to a 

model structure comprising electronic circuit components, they share the same 

features of other types of the curve fit. These optimized curve-fitted ECM 

models cannot be used in applications where the cell is operated very differently 

from the lab-test scenario. ECMs can yield fast and robust simulations of the 

cell input/output (current/voltage) behaviour but they cannot predict the internal 

electrochemical states. 

 In this project, an equivalent circuit model of Li-ion battery cell is used as 

the input for estimating SOC and SOH of the battery. ECMs use electrical-

circuit analogues to define a behavioural or phenomenological approximation to 

how a cell’s voltage responds to different input-current stimuli. 

That is, knowledge of common electronic elements is applied to define a 

circuit that has behaviour that closely matches the observed behaviour of the 

battery cell. The equations that describe the circuit therefore also closely 

describe the observed operation of the cell. Such models are called equivalent-

circuit models. 

 At present, the majority of battery management systems for large battery 

packs use some kind of equivalent-circuit cell model as a basis for maintaining 

the proper operating boundaries for the cells and for estimating critical internal 

cell states. The simplicity and robustness of equivalent-circuit models are the 

main reasons for this. 
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3.2 Components of Equivalent Circuit Model 

 The Equivalent Circuit Model of the Li-ion cell model that is developed 

in this project consists of several components, namely: a dependent voltage 

source, a series resistor, a diffusion voltage component, and a hysteresis voltage 

component. 

3.2.1 Dependent Voltage Source 

The terminal voltage of the battery is higher when it is fully charged and it is 

lower when it is fully discharged. Therefore there exists a relationship between 

SOC and the terminal voltage of the battery. But the terminal voltage also 

depends on the dynamic factors. However, the equilibrium unloaded rest voltage 

or open-circuit voltage of a fully charged cell is higher than that of a fully 

discharged cell. This relation is depicted from the test taken in 3 different 

lithium-ion cells shown in Fig. 3.1. 

Fig. 3.1 - Variation of OCV with SOC 

 

3.2.2 Equivalent Series Resistance 

 Equivalent series resistance is added to include the dynamic behaviour of 

the cell when it is loaded or charged. When a cell is loaded, the terminal voltage 

drops below the open-circuit voltage of the cell and while charging, the terminal 
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voltage shoots above the open-circuit voltage. These two dynamic behaviours 

can be included in the cell model by adding series of resistance to the dependent 

voltage source. 

 

3.2.3 Diffusion Voltage Component 

 

 

Fig. 3.2 - Observation of Diffusion in Practical Lithium-ion Cell 

In Fig. 3.2, the red curve shows the discharge pulse to a lithium-ion 

battery and the blue curve shows the variation of terminal voltage of the battery. 

Here, the slow variation in terminal voltage of the battery with the discharge is 

called the diffusion voltage caused by diffusion in the battery (Rdiff). And the 

immediate rise in the terminal voltage after the discharge is removed is due to 

the stored charge in between the junction of the electrodes (RDC). 

To include the slow variation that is observed during pulse discharge of a 

Li-ion cell, a third component is included. This is caused by the slow diffusion 

of Lithium in Li-ion cells. And this slow voltage variation is called diffusion 

voltage (Vdiff). This effect can be closely approximated by one or more parallel 

capacitor-resistor sub circuits. 

For an exact equivalence, an infinite number of resistor-capacitor 

networks are needed; but, the circuit can often be modelled very well over some 

frequency range of interest using a small number of resistor-capacitor pairs. 
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3.2.4 Hysteresis Voltage Component 

Hysteresis voltage in a lithium-ion cell can be realized by observing a 

practical cell, in which the cell voltage settles down to a different value than that 

of the OCV of the cell. This variation depends on the recent history of the cell 

usage; whether it was recently charged or discharged. If it was recently charged, 

then the settled voltage is greater than OCV. If it was previously discharged, 

then the settled voltage is lesser than OCV. This hysteresis voltage is shown by 

the following Fig. 3.3. 

 

Fig. 3.3 - Evidence of Hysteresis 

 

3.3 Enhanced Self-Correcting Cell Model 

The model which includes all the above-mentioned components is called 

the Enhanced Self-Correcting Cell Model.  

❖ Enhanced - includes hysteresis effect. 

❖ Self-Correcting - includes both static and dynamic characteristics. 

The complete equivalent circuit model of the enhanced self-correcting 

cell model is given in Fig. 3.4. This model serves as the input for the estimation 

algorithms used in our project. All the components in this circuit do not have 

constant values but are a table of values depending on the SOC and operating 

temperature of the cell. 
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Fig. 3.4 - Equivalent Circuit Diagram of Enhanced Self-Correcting Cell model 

 

3.3.1 Mathematical Equations describing the ESC cell model 

The state equation of the ESC model is given by the following matrix 

equation (3.1) 

[

𝑧[𝑘 + 1]

𝑖𝑅[𝑘 + 1]

ℎ[𝑘 + 1]
]  =  [

1 0 0
0 𝐴𝑅𝐶 0
0 0 𝐴𝐻[𝑘]

] [

𝑧[𝑘]
𝑖𝑅[𝑘]

ℎ[𝑘]
]  

+  [

−
𝜂[𝑘]Δ𝑡

𝑄
0

𝐵𝑅𝐶 0

0 𝐴𝐻[𝑘] − 1

] [
𝑖[𝑘]

𝑠𝑔𝑛(𝑖[𝑘])
] ...... (3.1) 

 

Where ARC and BRC are matrices depending on the number of RC sub circuits 

and are given by equation (3.2) 

𝑖𝑅[𝑘 + 1] = [
𝐹1 0 …
0 𝐹2 …
⋮ ⋮ ⋱

] 𝑖𝑅[𝑘] + [
(1 − 𝐹1)

(1 − 𝐹2)
⋮

] ………............... (3.2) 

And Fj = exp(
−Δ𝑡

𝑅𝑗𝐶𝑗
), where j is the number of RC pairs. 

The output equation of the ESC model is given by equation (3.3) 

v[k] = OCV(z[k],T[k])+M0s[k]+Mh[k] + ∑RjiRj[k] + R0i[k]   .................... (3.3) 
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Where, OCV (z[k], T[k]) - Open Circuit Voltage of the cell 

  M0s[k]    - Instantaneous hysteresis voltage 

  Mh[k]   - Hysteresis voltage 

  ∑RjiRj[k]  - Voltage drop across RC sub circuit 

  R0i[k]   - Voltage drop across series resistance 

 

3.4 Collecting Cell Data for Modelling 

Parameter values for the ESC model are found by fitting the model 

equations to data collected from experiments performed on the cells of interest. 

These experiments are conducted with the aid of specially designed laboratory 

equipment known as battery-cell cyclers or battery-cell test equipment. Besides, 

most tests must be conducted in controlled temperature settings. This is 

maintained using environmental chambers. 

A cell’s open-circuit voltage is a static function of its state of charge and 

temperature. All other aspects of a cell’s performance are dynamic in some 

sense. So, separate experiments have to be performed to collect data for the 

OCV versus SOC relationship and the dynamic relationship. 

3.4.1 Lab tests to determine OCV relationship 

The general idea is straightforward. Before the start of the test, the cell 

must be fully charged. Then, the cell is very slowly discharged to a minimum 

operating voltage while continuously measuring cell voltage and accumulated 

ampere-hours discharged. The cell is then very slowly charged to a maximum 

operating voltage while continuously measuring cell voltage and accumulated 

ampere-hours charged. 

The purpose of the slow rate is to minimize the excitation of the dynamic 

parts of the cell model. C/30 rate is used, which is a compromise between the 

desire to have zero current to have a true equilibrium and the practical 
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realization that the test will already require on the order of 60 hours completing 

with a C/30 discharge followed by a C/30 charge. 

3.4.2 Lab tests to determine the dynamic relationship 

The cell must be exercised with profiles of current versus time that are 

representative of the final application for the resulting model to work best in that 

application. The Urban Dynamometer Driving Schedule (UDDS) profile is used 

to represent the driving pattern of the electric vehicle. An example UDDS 

profile is given in Fig. 3.5. Before any dynamic testing, the cell is first fully 

charged until it is at 100 % state of charge at 25◦C. Then experiments are done at 

several temperatures spread over the operational range of the cell. 

Both the tests are done at different temperatures so that the model can be 

used in real-time electric vehicle applications over a wide range of operating 

conditions. 

 

Fig. 3.5 - Current Profile of UDDS Drive Cycle 
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3.5 Creating ESC model using MATLAB 

 

Fig. 3.6 - Flow Chart for the Creation of ESC Cell Model 

 The flow chart in Fig.3.6 depicts the overall process for creating an 

enhanced self-correcting (ESC) cell model. The blue boxes indicate laboratory 

processes; the yellow boxes indicate data files, and the green boxes indicate 

processing by MATLAB functions. The “OCV testing” box denotes OCV 

relationship cell tests run at several temperatures. The “Dynamic testing” box 

denotes dynamic relationship cell tests also run at several temperatures.  

 The “Test data” boxes abstractly denote the output of the laboratory 

testing. The procesSOCV.m function processes the raw cell-test data to produce 

an OCV relationship. The processDynamic.m function likewise processes the 

raw cell-test data to produce the final ESC cell model. 

3.6 Output of ESC Cell Model  

 

Fig. 3.7 - Calculated Values of ESC Model from MATLAB  
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 The values shown in Fig. 3.7 are the calculated model values of the ESC 

cell model for lithium iron phosphate (LiFePO4) or LFP battery. 

 

 

Fig. 3.8 - Plot between Series Resistance and Temperature of ESC Model 

 

 

Fig. 3.9 - Plot between RC Time Constant and Temperature of ESC Model 

 

The output graphs in Fig. 3.8 and Fig. 3.9 shows the variation of series 

resistance and RC time constant concerning variation in ambient temperature 

respectively.  
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Fig. 3.10 - Plot between Measured Voltage during the Test and Estimated Voltage of the Cell Model 

 

Fig. 3.10 gives the comparative result of the measured value of the battery 

when it was under test to the terminal voltage developed by the ESC model for 

the same current stimulus. This gives us the closeness of the developed ESC 

model to the practical cell for the same input. 
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CHAPTER - 4 

Battery State Estimation 

4.1 SOC Estimation 

The various algorithms are initialised when the battery-management 

device programme is started. As the driver turns the key to the "on" location in 

any vehicle application, this happens, and it can also necessitate taking any 

initial measurements, loading stored parameter values from a non-volatile 

memory, doing safety tests, and closing the contactors.  

The BMS then enters its main loop control, which loops at a constant 

interval after all of these initializations. The current in the battery pack, cell 

voltages, and temperatures are all determined first. The condition of each battery 

cell is then calculated, which involves calculating a SOC calculation. Then, each 

time, a health prediction for each cell is revised. At this stage, cells with unequal 

SOCs would be matched, and also the battery-pack energy and power limits are 

calculated and transmitted to the load-management system. 

Finally, when the application is terminated, the contactors are reopened 

and data showing the current state of the battery pack is saved to non-volatile 

memory, which must be reloaded and used the next time the battery pack is 

needed. The cell's SOC is an integral part of the battery-model state vector. A 

SOC estimate is required as input to balancing strategies and to both energy and 

power calculations.  

Although estimating the entire battery-model state vector can be helpful, 

SOC is estimated as the first step. Any basic methods produce inaccurate 

figures, although more sophisticated methods produce excellent results. 
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4.2   Estimation Techniques of SOC 

Estimation techniques can be of methods mainly focused on voltage 

measurements, or methods purely based on current measurements, or a more 

general approach combining both voltage and current measurements with an 

effective cell model. 

4.2.1 Voltage-based methods to estimate SOC 

Based on the ESC cell model, cell’s terminal voltage is given as a 

function of its SOC via equation (4.1): 

v[k] = OCV(z[k],T[k])+M0s[k]+Mh[k] + ∑RjiRj[k] + R0i[k]   ................... (4.1) 

 Assuming the cell is at rest and neglecting the effect of hysteresis, the 

basic relationship can be obtained as v[k] ≈ OCV (z[k]). The open-circuit 

voltage can be calculated as a function of SOC with the help of a lookup table. 

Approximating state of charge with the help of lookup table and using the 

present terminal voltage is truly accurate. However, it is nonetheless a simple 

operation. It is okay to use this method even when the cell is under load to find 

an approximate state of charge from the loaded terminal voltage. However, 

doing so gives poor results. 

 

 

Fig. 4.1 Variation of SOC from Minimum to Maximum 
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The variance of the battery's State of Charge with respect to time (i.e. the 

battery's lifecycle) is shown in Fig. 4.1. The values on the vertical axis are the 

SoC values expressed as a proportion of 100%. 

4.2.2 Poor, current-based method to estimate SOC 

To use current as the primary estimator of state of charge, the following 

equation (4.2) is used: 

zk= z0 - (𝛥𝑡 / 𝑄) ∑ 𝜂𝑗𝑖𝑗
𝑘 − 1
𝑗 = 0    ……………….………….(4.2) 

This equation is, in fact, precise. It measures the amount of charge added 

to or removed from the cell, normalizes this net amount by total capacity, and 

updates the state of charge based on this net flow of charge. 

The noise and nonlinear errors should be assumed to have a zero mean 

and thus have little impact on the state of charge estimate's expected value. They 

do, however, allow the estimate's uncertainty to rise over time. Since bias, self-

discharge, and leakage errors do not have a zero mean, the state of charge 

calculation will continue to decay, and measurement error variance will further 

increase the uncertainty of the SOC estimate. 

 

4.2.3 Model-based state estimation 

A voltage-only or a current-only device may be replaced by combining 

the approaches in either way. It is done by using a model of cell input/output - 

current/voltage behaviour in a model-based estimation method. The resulting 

method will be able to estimate SOC as well as all of the model's internal states, 

along with providing some additional benefits. The electrical current received 

by the cell is its input, and the cell's output is its terminal-voltage response. 

Inside the cell, there is a true SOC value and a true set of diffusion currents and 

hysteresis voltages. 
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Fig. 4.2 General Block Diagram of Kalman Filter 

  

  

The Fig. 4.2 shows the general block diagram representation of SPKF. It 

is clear from the figure that the Kalman filter compares the true system and 

model to produce respective outputs. 

Since the system’s true state cannot be calculated directly, model-based 

calculations are used to determine the input given to the true system i.e. the 

current and it propagates the same input into the model of the system. The 

model-based method is analogous to coulomb counting. 

Extreme caution is needed while applying feedback. The voltage-

prediction error will rise due to one or many things. State prediction errors, 

which must be corrected, calculation errors that arise due to sensor noise and 

modelling errors are all examples of above mentioned prediction errors. Since 

the model is not a perfect representation of the true cell dynamics, and 

henceforth to account for these causes of error, the state-estimate update must be 

carefully computed as much as possible. 

 

Sequential probabilistic inference 

xk = f(xk-1 , uk-1 , wk-1)   

yk = h(xk , uk , vk)                 ………..…………… (4.3) 

The sequential-probabilistic-inference problem given in equation (4.3) 

seeks to find an efficient recursive estimate of the present state of the dynamic 
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system using knowledge of all inputs and measurements of all outputs up until 

time k. The solution will be sequential in the sense that it implements a 

recursion that computes the new estimate based on the prior estimate and on the 

new information measured at this time step; hence, a sequence of steps provides 

a sequence of estimates. The solution is probabilistic in the sense that it must 

take into account the randomness of the process noise and the sensor noise when 

computing the estimates. 

4.3 The six-step process of Kalman filter 

 1. The state estimate: The best approximation of this current state value is 

computed, which is  �̂� + k, at the end of each iteration. 

2. The covariance estimate: The covariance matrix gives the uncertainty 

of �̂� + k which could be used to compute confidence intervals or error bounds on 

the estimate. 

General step 1a: State-prediction time update. 

Each time step, the computed prediction is updated of this present value 

of   �̂�+k based on prior information using equation (4.4). 

�̂�𝑘
−

 = 𝔼[𝑥𝑘 |  𝕐𝑘−1] 

        = 𝔼[𝑓(𝑥𝑘−1, 𝑢𝑘−1, 𝓌𝑘−1 |  𝕐𝑘−1]  ……………..………. (4.4) 

 

General step 1b: Error-covariance time update.  

Based on prior information, the predicted state-estimate error covariance 

matrix is determined using the equation (4.5), and therefore the system model is 

updated. 

∑ =−
�̃�,𝑘 𝔼[(�̃�𝑘

−)(�̃�𝑘
−)𝑇]………………..…….………… (4.5) 

General step 1c: Predict system output �̂�k. 
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The system’s output is predicted with the help of equation (4.6) and using 

prior information and the model. 

�̂�𝑘
−

 = 𝔼[𝑥𝑘 |  𝕐𝑘−1] 

       = 𝔼[𝑓(𝑥𝑘−1, 𝑢𝑘−1, 𝓌𝑘−1 |  𝕐𝑘−1]  …….....…….... (4.6) 

General step 2a: Estimator gain matrix Lk.  

The estimator gain matrix Lk is computed by evaluating the subsequent 

equation (4.7) which is given as follows: 

�̂�𝑘 = 𝔼[𝑦𝑘  |  𝕐𝑘−1] 

    =𝔼[ℎ(𝑥𝑘 , 𝑢𝑘 , 𝓋𝑘  |  𝕐𝑘−1]  ……………................... (4.7) 

General step 2b: State-estimate measurement update.  

The posterior i.e., the state after the measurement is taken, state estimate 

is updated by the prediction as in equation (4.8), using the gain vector Lk. 

�̂�𝑘
+ = �̂�𝑘

− + 𝐿𝑘(𝑦𝑘 − �̂�𝑘)……………………..……… (4.8) 

General step 2c: Error-covariance measurement update.  

Finally, determine the posterior state-estimate error covariance matrix 

using equation 4.9.   

∑ =+
�̃�,𝑘 ∑ −−

�̃�,𝑘 𝐿𝑘 ∑ 𝐿𝑘
𝑇

�̃�,𝑘 …………………….....…….. (4.9) 

After performing all six stages, the estimator waits until the next sample 

interval, updates k, and then moves on to step 1a. 

 

4.3.1 Deriving the six steps 

To address the state estimation problem, the sigma point method is used 

to spread statistics through non-linearity, as well as the sequential probabilistic 

inference discussed previously. 
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For the previous time moment, the augmented posterior state estimate is 

first established and then the augmented posterior state-estimation-error 

covariance matrix. The p + 1 augmented sigma points are generated using these 

variables. 

 

4.3.2 Implementing SPKF using the ESC cell model 

In order to generate the prior state estimates and related noises, the 

augmented sigma points defining are generated in the first phase of SPKF. First, 

the prior approximation �̂� is used to construct the augmented state-estimate 

vector xhat_a. The Cholesky component of the previous estimation-error 

covariance SigmaX is then calculated.  

The biggest difference is that the model state and output equations are not 

embedded inline but is separated as independent functions. 

The BMS must have a real-time clock to record the amount of time the 

battery pack has been idle for proper initialization. The battery cells are assumed 

to be in electrochemical equilibrium and that cell voltage is equal to OCV since 

the pack is assumed as rested for a long time before being started. So, based on 

the calculated OCV, the SOC figures are reset, the diffusion currents are set to 

zero, and keep the prior hysteresis condition because hysteresis does not change 

when the cell is resting. 

In other case, if the pack has been resting for a short period, this method 

will not work well since the battery cells are not in a steady-state. It often takes 

tens of minutes or sometimes even hours to reach the state equilibrium. In fact, 

due to aggressive driving, a large regeneration pulse was sent into the battery 

pack just before turning the vehicle off, and then the battery management 

system has to store cell state estimates to non-volatile memory.  
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Even if the stored calculations are closely accurate, the current measured 

voltages would be far higher than OCV. It is actually not that easy to initialise 

the pack in the same way if it were in equilibrium. 

Instead, it is set up and made to execute a simple time and measurement 

update via a simple Kalman filter for the state equations involving SOC and 

diffusion currents. Hysteresis voltages do not change, since the pack has been 

resting. A single-step execution of this Kalman filter will update the state 

estimate and its covariance matrix based on the total time the battery pack has 

been resting. 

 

 

 

Fig. 4.4 Sigma Point Kalman Filter in Action 

Fig. 4.4 shows the simple action of Sigma point Kalman Filter. It simply depicts 

that the estimated value trying close to match up with true values and also to lie 

within the bounds. 
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Fig. 4.5 SOC Determination using SPKF 

  

Fig. 4.5 shows the result of SOC estimation using the Sigma Point 

Kalman Filter algorithm. The various SOC values are plotted against time from 

initial cycle of the battery. It is clear from the graph that the SOC value 

degrades with respect to battery cycles i.e. time. And also, it is abruptly clear 

that the estimated true values are well within the error bounds. 
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CHAPTER 5 

Battery Health Estimation 

5.1 Sensitivity of voltage to R0 

To estimate total capacity and resistance, input/output (current/voltage) 

data from the cell must be used in some form. As a measure of how easily a 

good estimate can be made, the sensitivity of the cell voltage signal to resistance 

and capacity changes can be considered. It gives an idea of the amount of 

estimation that is easy or difficult and reveals the voltage. 

 It is relatively easy to estimate the cell’s equivalent series resistance 

because voltage measurements are highly observable. Consider the equation 

(5.1) of cell voltage,  

v[k] =OCV(z[k], T[k]) + M0s[k] + Mh[k] + ∑RjiRj[k] + R0i[k]......... (5.1) 

A cell's resistance is typically measured in milliohms, and its voltage is 

typically measured in volts. The absolute sensitivity of voltage to 𝑅0is relatively 

high when multiplied by cell current ik, which can be very broad (a magnitude 

of 0.01 would not be out of the ordinary). This means that the voltage signal 

resistance should be measured relatively easily. 

Subtracting voltages at two adjacent time samples is one way to estimate 

R0. When ∆ik = ik−1 − ik = 0, as during a constant-current event or cell rest, 

Immediate divide-by-zero problem is shown when using this form. As a result, 

when |∆ik| is small, the updates to Ȓ0,k are skipped avoiding the divide-by-zero 

problem as well as amplification of measurement and approximation noise in 

Equation. 

The estimate of Ȓ0,k from Equation is very noisy due to the ESC cell 

model's imperfect fidelity in terms of true cell activity and the inaccuracy 
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introduced by the unique approximations. The Ȓ0,k signal can be filtered to get a 

better estimate of R0. 

Another point to mention is that a cell's resistance is affected by both the 

SOC and the temperature. As scalar resistance estimation is revised, it adapts to 

model the cell resistance at the current SOC and temperature as those two 

variables shift over time. If, instead of an adaptive scalar, an adaptive function 

that describes the entire relationship of resistance versus state of charge is 

required, a functional form must be proposed, and the coefficients of the form 

must be adjusted based on the current state of charge, temperature, and 

operating resistance. 

𝑅0 = 𝑅0,𝑟𝑒𝑓exp(
𝑅0,𝑟𝑒𝑓

𝑅
(

1

𝑇𝑟𝑒𝑓
−  

1

𝑇
))  …………………… (5.2) 

To overcome the temperature dependence of the equation (5.2), only the 

R0,ref and ER0,ref values must be adjusted online. However, if the battery pack 

stays near one temperature for a prolonged period of time, the adaptation 

algorithm must be carefully designed, as adaptation will overcorrect predictions 

at that temperature, causing resistance predictions at other temperatures to 

become biased. Resistance modeling with local basis functions can also manage 

temperature and SOC dependency. Changing the parameters of these basis 

functions will only affect the resistance relationship locally, and will not affect 

resistance predictions at other temperatures or states of charge. However, the 

resistance of operating points that are not regularly visited by the application 

will not be changed as frequently, and the figures will become out of date over 

time. 
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5.2 Sensitivity of voltage to total capacity Q 

The voltage's sensitivity to capacity is low due to the analogue hysteresis 

concept. As a result, individual voltage measurements provide very little 

capacity information. To accurately estimate total capacity, several voltage 

measurements must be combined, and it helps if the current is usually in the 

same direction for the majority of the time between measurements. That is, a big 

change in SOC over time makes estimating total capacity with the data collected 

during that time better than a small change in SOC. 

Two separate, more difficult methods. First, a nonlinear Kalman filter is 

considered, which can be effective and has the added advantage of 

simultaneously estimating all cell-model parameter values as they shift over 

time. These Kalman-filter-based methods, on the other hand, are fairly complex, 

and some algorithm stability issues must be resolved before the estimates can be 

trusted. To estimate total power, simpler regression approaches can be used, but 

the most straightforward ordinary least-squares method produces biased results. 

5.3 Ensuring correct convergence 

The state estimate �̂�𝑘
+ and the parameter estimate �̂�𝑘

+ are adjusted such 

that the model input/output relationship closely matches the calculated 

input/output results. It is possible for state and parameter estimates to deviate 

from their true values while still having good agreement with input/output 

measurements, at least for a time, due to cancellations between errors caused by 

incorrect state and parameter estimates. 

Although the errors in �̂�𝑘 caused by ignoring short-term hysteresis bias 

and diffusion voltages prevent it from being used as the primary SOC estimator, 

its predicted long-term behavior in a complex system is correct, and the state of 

charge state in the dual and joint filters is accurate. 
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5.4 Weighted total least squares. 

The TLS method assumes that both 𝑥𝑖 and 𝑦𝑖  measurements are 

inaccurate and models the data as (y − ∆y) = Q(x − ∆x). The error bars on the 

data points reflect the degree of uncertainty in each dimension. x is a zero-mean 

Gaussian random vector with known element variances σ2
xi and that y is a zero-

mean Gaussian random vector with known element variances σ2
yi, where σ2

xi is 

not always equal to or similar to σ2
yi and where both of the σ2

xi and σ2
yi can be 

distinct is assumed. 

TLS tries to find an approximation �̂�𝑛 of the true cell total potential Q 

that minimises the number of squared errors ∆xi plus ∆yi. The method here to 

allow us to find �̂�𝑛 that minimizes the number of weighted squared errors, 

where the weighting accounts for calculation uncertainty is generalized. 

Unfortunately, it lacks all of the desirable features of the WLS solution. 

Specifically, 

1. The number of significant figures in the solution doubles with each 

iteration of the update of this Newton–Raphson process. In testing, four 

iterations yield results with double precision is found. And, since the 

metric function χ2
WTLS is convex, this iterative procedure is guaranteed to 

converge to the global solution. 

2. In the general case, there is no recursive update. This has consequences 

for both storage and computation. To use WTLS, the whole x and y 

vectors must be held, which means more storage is required as the 

number of measurements grows. Furthermore, as n increases, the number 

of computations increases. WTLS, on the other hand, is not ideally 

designed for embedded-system applications that must run in real-time and 

with little memory. 
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3. There is no memory recursive change that fades with time. A non-

recursive fading memory weighted total least squares (FMWTLS) cost 

function, on the other hand, can be defined as follows:  

𝑋𝐹𝑀𝑊𝑇𝐿𝑆
2  = ∑ 𝛾𝑛−𝑖𝑛

𝑖=1
(𝑦𝑖−�̂�𝑛𝑥𝑖)2

�̂�𝑛𝜎𝑥𝑖
2 +𝜎𝑦𝑖

2 ………….………….... (5.3) 

This cost function's Jacobian is 

𝜕𝑋𝐹𝑀𝑊𝑇𝐿𝑆
2

𝜕�̂�𝑛
 = 2 ∑ 𝛾𝑛−𝑖𝑛

𝑖=1

(�̂�𝑛𝑥𝑖−𝑦𝑖)(�̂�𝑛𝑦𝑖𝜎𝑥𝑖
2 +𝑥𝑖𝑥𝑖𝑦𝑖

2 )

(�̂�𝑛
2

𝜎𝑦𝑖
2 +𝜎𝑦𝑖

2 )
2 ….……..… (5.4) 

The Hessian is 

𝜕2𝑋𝐹𝑀𝑊𝑇𝐿𝑆
2

�̂�𝑛
2  = 2 ∑ 𝛾𝑛−𝑖𝑛

𝑖=1 (

𝜎𝑦𝑖
4 𝑥𝑖

2+𝜎𝑥𝑖
4 (3�̂�𝑛

2
𝑦𝑖

2−2�̂�𝑛
3

𝑥𝑖𝑦𝑖)

(�̂�𝑛
2

𝜎𝑥𝑖
2 +𝜎𝑦𝑖

2 )
3

 

    −  
𝜎𝑥𝑖

2 𝜎𝑦𝑖
2 (3�̂�𝑛

2
𝑥𝑖

2−6�̂�𝑛𝑥𝑖𝑦𝑖+𝑦𝑖
2)

(�̂�𝑛
2

𝜎𝑥𝑖
2 +𝜎𝑦𝑖

2 )
3 )………..…. (5.5) 

   

A Newton–Raphson search is used to find the solution to the fading-memory 

cost function which is used to find an approximation of Q by using the Jacobian 

and Hessian of this cost function. 

A special case of WTLS that gives a closed-form solution with recursive 

updates and fading memory is given by equation (5.5). Then an approximation 

of a solution is given to the general WTLS problem that has the same features as 

the WLS solution.  
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5.5 Goodness of Model Fit 

It's also necessary to be able to determine the degree of confidence when 

calculating cell total capacity estimation�̂�𝑛. The variance 𝜎2�̂�𝑛 of the total 

capacity estimate so that confidence intervals can be computed like three-sigma 

bounds (�̂�𝑛− 3𝜎�̂�𝑛, �̂�𝑛+ 3𝜎�̂�𝑛) within which the true value of cell total 

capacity Q lies is qualified. 

5.6 Simplified Total Least Squares 

The properties of the proportional-total-least-squares solution are similar to 

those of the WLS solution: 

1. It yields a closed-form answer for𝑄𝑛. It is not necessary to iterate 

advanced algorithms; only basic mathematical operations are needed.  

2. In a recursive way, the solution can be conveniently computed. The three 

running sums c1,n, c2,n, and c3,n are kept track of. The amounts and 

calculate a modified total-capacity calculation as new data becomes 

available is updated.  

3. It's easy to incorporate fading memories. 

4. Unfortunately, this solution does not allow for arbitrary values for 𝜎𝑥𝑖

2  and 

𝜎𝑦𝑖

2   they must be proportionally connected for each data point by the 

scaling factor 𝜎𝑥𝑖
 = k𝜎𝑦𝑖

. The following section defines a PTLS 

approximation that allows an arbitrary relationship. 

 

5.7 Deriving the AWTLS Cost Function 

An approximate solution to the WTLS problem that allows 𝜎𝑥𝑖

2  and 𝜎𝑦𝑖

2  to 

be nonproportional and that yields a recursive solution for feasible 

implementation in an embedded system, which illustrates the geometry of the 
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WTLS and PTLS solutions and motivates the geometry of the approximate 

solution to be developed in this section. 

 

 

Fig 5.1 - Geometry of WTLS, PTLS and AWTLS. 

 

When 𝜎𝑥𝑖

2  and 𝜎𝑦𝑖

2  are random, the WTLS relationship between data point (𝑥𝑖 , 𝑦𝑖) 

and its optimised map (𝑋𝑖 , 𝑌𝑖) on 𝑌𝑖 = �̂�𝑛𝑋𝑖is seen in the left frame of the 

diagram. The error bars are drawn around the data points (𝑥𝑖 , 𝑦𝑖) to show the 

uncertainties in each axis, which are proportional to 𝑥𝑖and𝑦𝑖. On the line 

𝑌𝑖=�̂�𝑛𝑋𝑖, a dotted line connects each data point (𝑥𝑖 , 𝑦𝑖) to its map (𝑋𝑖 , 𝑌𝑖). The 

difference between 𝑥𝑖 and 𝑋𝑖  is not always equal to the distance between 𝑦𝑖 

and𝑌𝑖. If the 𝑥𝑖 measurement's quality is higher (worse) than the 

𝑦𝑖measurement's quality, the distance from 𝑥𝑖 to its map 𝑋𝑖should be shorter 

(greater) than the distance from 𝑥𝑖to its map 𝑋𝑖. 

The PTLS relationship between data point (𝑥𝑖 , 𝑦𝑖) and its optimized map (𝑋𝑖 , 𝑌𝑖) 

on 𝑌𝑖=�̂�𝑛𝑋𝑖when 𝜎𝑥𝑖

2 and 𝜎𝑦𝑖

2 are equal is seen in the middle frame. The distance 

between 𝑥𝑖and  𝑋𝑖is the same as the distance between  𝑦𝑖and 𝑌𝑖in this case, and 

the line connecting the data point (𝑥𝑖 , 𝑦𝑖) and its map (𝑋𝑖 , 𝑌𝑖) is perpendicular to 

the line 𝑌𝑖=�̂�𝑛𝑋𝑖. If 𝑥𝑖and 𝑦𝑖are not equal but additive, so either the x- or y-axes 

can be scaled to produce transformed data points with equal variances, and the 

same principle applies. 
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The concepts that will be used to obtain an estimated weighted total-least-

squares (AWTLS) solution are seen in the right frame of the diagram. The line 

connecting data points (𝑥𝑖 , 𝑦𝑖) and (𝑋𝑖 , 𝑌𝑖) be perpendicular to the line 𝑌𝑖=�̂�𝑛𝑋𝑖 is 

required. This would produce a solution that can be solved in a recursive 

manner. However, in the optimization cost equation, the distance between 𝑥𝑖and 

𝑋𝑖differently than the distance between 𝑦𝑖and𝑌𝑖, as in the WTLS solution is 

weighted. 

These AWTLS solutions have the following features in common with the 

WLS solution: 

1. For𝑄𝑛, they have a closed-form solution. It is not necessary to iterate. The 

only complication is the need to locate the roots of a quartic polynomial, 

but this can be done in a manageable manner. 

2. In a recursive way, the solution can be conveniently computed. The six 

moving quantities c1,n through c6,n are kept track of. The amounts and 

calculate a modified total-capacity calculation as new data becomes 

available is updated.  

3. Fading memory can be conveniently applied to allow the calculation Q:n 

to put more focus on recent measurements than earlier measurements, 

enabling Q:n to respond to true cell total capacity changes. 

4. Furthermore, unlike the PTLS approach, this method allows for 

independent weighting of 𝑥𝑖 and 𝑦𝑖data points. 

 

5.8 Output of System 

The Fig.5.2 shows the efficiency of the WLS, WTLS, PTLS, and AWTLS 

total-capacity estimation approaches is compared by examining multiple 

utilization scenarios. The fading memory variant of the four methods is used in 

all cases, but the prefix "FM" is omitted for brevity. The fading-memory 

forgetting factor is set to 1.0 unless otherwise specified. 
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Fig. 5.2 - Comparison of the estimates of each method. 

 

Finally, the AWTLS approach is implemented. First, the roots of the 

quadratic equation are searched. Any roots that aren't positive and genuine are 

discarded. Then, using the remaining candidate roots, the cost function of the 

equation is calculated and holds the root that minimizes the cost function. A 

capacity degradation factor is added to optimize the final result. Fig. 5.3 shows 

the final state of health of the battery during the battery life time 

 

 

Fig.5.3 - State of Health Output 
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CHAPTER 6 

CONCLUSION 

Thus the project work involves successful estimation of the state of 

charge and the state of health of the lithium iron phosphate (LiFePO4) or LFP 

battery with the help of enhanced self-correcting cell model using MATLAB 

software. The output graphs show the estimated values of SOC and SOH of the 

cell along with their true values measured in the laboratory during testing. 

 

Future Works 

This project can be extended to any chemistry of the lithium-ion cells just 

by changing the test data in the ESC cell model program without having to 

change any other program. This work can be used for the Real-Time online 

estimation of SOC and SOH of an electric vehicle battery. For online 

estimation, one input to the algorithms must be from the ESC cell model and 

another input must be from the real battery pack. 
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APPENDIX 

1. OCVfromSOCTemp 

% Set up data for problem 

load read-only/Modeldata.mat 

 

% FMAWTLS - recursive, scaled by initial standard deviations 

K = sqrt(Sigmax(1)/Sigmay(1));     % Constant of proportionality 

Q0=100; 

Qnom = 0.99*Q0;                 % Initialize nominal capacity 

gamma = 1.00;                      % Fading-memory rate constant. Default = 1.00 

SYinit = 1e-2;                        % Uncertainty of Q with respect to Qnom 

c1 = 1/(K^2*SYinit);              % Correct initialization of c1 recursive value 

c2 = K*Qnom/(K^2*SYinit);      % Correct initialization of c2 recursive value 

c3 = K^2*Qnom^2/(K^2*SYinit);% Correct initialization of c3 recursive value 

% Init c4...c6 assuming SXinit = K^2*SYinit to match TLS 

c4 = 1/(K^2*SYinit);           % Correct initialization of c4 recursive value 

c5 = K*Qnom/(K^2*SYinit); % Correct initialization of c4 recursive value 

c6 = K^2*Qnom^2/(K^2*SYinit);% Correct initialization of c4 recursive value 

Qhat = 0*x;                       % Initialize storage for output  

SigmaQ = 0*x; 

for k = 1:length(x), 

c1 = gamma*c1 + x(k)^2/(K^2*Sigmay(k)); 

c2 = gamma*c2 + K*x(k)*y(k)/(K^2*Sigmay(k)); 

c3 = gamma*c3 + K^2*y(k)^2/(K^2*Sigmay(k)); 

c4 = gamma*c4 + x(k)^2/Sigmax(k); 

c5 = gamma*c5 + K*x(k)*y(k)/Sigmax(k); 

c6 = gamma*c6 + K^2*y(k)^2/Sigmax(k); 

 

 r = roots([c5 (-c1+2*c4-c6) (3*c2-3*c5) (c1-2*c3+c6) -c2]); 

 r = r(r==conj(r)); 

 r = r(r>0); 

Jr = ((1./(r.^2+1).^2).*(r.^4*c4-2*c5*r.^3+(c1+c6)*r.^2-2*c2*r+c3))'; 

Q = r(Jr==min(Jr)); 

J = min(Jr); 

 H=(2/(Q^2+1)^4)*(-2*c5*Q^5+(3*c1-6*c4+3*c6)*Q^4+(-

12*c2+16*c5)*Q^3+(-8*c1+10*c3+6*c4-8*c6)*Q^2+(12*c2-

6*c5)*Q+(c1-2*c3+c6)); 

Qhat(k) = Q/K; 

SigmaQ(k) = 2/H/K^2; 

end 

xvals = 1:length(Qhat); 



53 

 

plot(xvals,Qhat,[xvals,NaN,xvals],[Qhat+3*sqrt(SigmaQ),NaN,Qhat-

3*sqrt(SigmaQ)]); 

xlabel('Update iteration number'); ylabel('Total capacity estimate (Ah)'); 

title('Output of FMAWTLS method');   xlim([1 1000]); 

legend('FMAWTLS estimate','Bounds on estimate','location','northeast'); 

fprintf('Final FMAWTLS estimate (using all data): %f +/- 

%f\n',Qhat(end),3*sqrt(SigmaQ(end))); 

 

 

2. SIMCELL 

 

function [vk,irk,hk,zk,sik,OCV] = simCell(ik,T,deltaT,model,z0,iR0,h0) 

% Force data to be column vector(s) 

ik = ik(:); iR0 = iR0(:); 

% Get model parameters from model structure 

RCfact = exp(-deltaT./abs(getParamESC('RCParam',T,model)))'; 

G = getParamESC('GParam',T,model); 

Q = getParamESC('QParam',T,model); 

M = getParamESC('MParam',T,model); 

M0 = getParamESC('M0Param',T,model); 

RParam = getParamESC('RParam',T,model); 

R0Param = getParamESC('R0Param',T,model); 

etaParam = getParamESC('etaParam',T,model); 

etaik = ik; 

% compensate for coulombic efficiency 

etaik(ik<0) = etaParam*ik(ik<0);   

% Simulate the dynamic states of the model 

if exist('ss','file') , % use control-system-toolbox method, if available 

 sysd= ss(diag(RCfact),1-RCfact,eye(length(RCfact)),0,-1); 

 irk = lsim(sysd,etaik,[],iR0); 

else 

 irk=zeros([length(ik) length(iR0)]); irk(1,:) = iR0; 

 for k = 2:length(ik), 

 irk(k,:) = RCfact'.*irk(k-1,:) + (1-RCfact')*etaik(k-1); 

 end 

end 

zk = z0-cumsum([0;etaik(1:end-1)])*deltaT/(Q*3600); 

if any(zk>1.1), 

 warning('Current may have wrong sign as SOC> 110%'); 

end 
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% Hysteresis stuff 

hk=zeros([length(ik) 1]); hk(1) = h0; sik = 0*hk; 

fac=exp(-abs(G*etaik*deltaT/(3600*Q))); 

for k=2:length(ik), 

hk(k)=fac(k-1)*hk(k-1)-(1-fac(k-1))*sign(ik(k-1)); 

 sik(k) = sign(ik(k)); 

 if abs(ik(k))<Q/100, sik(k) = sik(k-1); end 

end 

% Compute output equation 

  OCV = OCVfromSOCtemp(zk,T,model); 

vk = OCV - irk*RParam' - ik.*R0Param + M*hk + M0*sik; 

 

3. XLSALGOS 

% = xLSalgos(measX,measY,SigmaX,SigmaY,gamma,Qnom)       

% Tests the recursive performance of the xLS algorithms on a particular 

% dataset. 

% Inputs: 

%      measX:  noisy z(2)-z(1) 

%   measY:  noisy integral(i(t)/3600 dt) 

%   SigmaX: variance of X 

%   SigmaY: variance of Y 

%   gamma:  geometric forgetting factor (gamma = 1 for perfect memory) 

%   Qnom:   nominal value of Q: used to initialize recursions if nonzero 

% 

% Outputs: 

%   Qhat:   estimate of capacity at every time step 

%      column 1 = WLS - weighted, recursive 

%      column 2 = WTLS - weighted, but not recursive 

%      column 3 = SCTLS - scaled confidence TLS; recursive and 

%      weighted, but using SigmaX(1) and SigmaY(1) only 

%      to determine factor by which all SigmaX and 

%       SigmaY are assumed to be related 

%       column 4 = AWTLS - recursive and weighted 

%   SigmaQ: variance of Q, computed via Hessian method (columns 

%      correspond to methods in the same way as for Qhat) 

%   Fit:    goodness of fit metric for each method (columns 

%      correspond to methods in the same way as for Qhat) 

function[Qhat,SigmaQ,Fit] = 

xLSalgos(measX,measY,SigmaX,SigmaY,gamma,Qnom) 

% Reserve some memory 

Qhat = zeros(length(measX),4); SigmaQ = Qhat; Fit = Qhat; 

  K = sqrt(SigmaX(1)/SigmaY(1)); 
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% Initialize some variables used for the recursive methods 

  c1 = 0; c2 =0; c3 = 0; c4 = 0; c5 = 0; c6 = 0; 

  C1 = 0; C2 =0; C3 = 0; C4 = 0; C5 = 0; C6 = 0; 

ifQnom ~= 0 

 c1 = 1/SigmaY(1); c2 = Qnom/SigmaY(1); c3 = Qnom^2/SigmaY(1); 

 c4 = 1/SigmaX(1); c5 = Qnom/SigmaX(1); c6 = Qnom^2/SigmaX(1); 

 C1 = 1/(K^2*SigmaY(1)); C2 = K*Qnom/(K^2*SigmaY(1)); 

 C3 = K^2*Qnom^2/(K^2*SigmaY(1)); 

 C4 = 1/SigmaX(1); C5 = K*Qnom/SigmaX(1); C6 = 

K^2*Qnom^2/SigmaX(1); 

end 

foriter = 1:length(measX) 

 % Compute some variables used for the recursive methods 

 c1 = gamma*c1 + measX(iter)^2/SigmaY(iter); 

 c2 = gamma*c2 + measX(iter)*measY(iter)/SigmaY(iter); 

 c3 = gamma*c3 + measY(iter)^2/SigmaY(iter); 

 c4 = gamma*c4 + measX(iter)^2/SigmaX(iter); 

 c5 = gamma*c5 + measX(iter)*measY(iter)/SigmaX(iter); 

 c6 = gamma*c6 + measY(iter)^2/SigmaX(iter); 

 C1 = gamma*C1 + measX(iter)^2/(K^2*SigmaY(iter)); 

 C2 = gamma*C2 + K*measX(iter)*measY(iter)/(K^2*SigmaY(iter)); 

 C3 = gamma*C3 + K^2*measY(iter)^2/(K^2*SigmaY(iter)); 

 C4 = gamma*C4 + measX(iter)^2/SigmaX(iter); 

 C5 = gamma*C5 + K*measX(iter)*measY(iter)/SigmaX(iter); 

 C6 = gamma*C6 + K^2*measY(iter)^2/SigmaX(iter); 

  

 % Method 1: WLS 

 Q = c2./c1; Qhat(iter,1) = Q; 

 H = 2*c1;   SigmaQ(iter,1) = 2/H; 

 J = Q.^2.*c1 -2*Q.*c2 + c3; 

 Fit(iter,1) = gammainc(J/2,(iter-1)/2,'upper'); 

end 

  r = roots([c5 (-c1+2*c4-c6) (3*c2-3*c5) (c1-2*c3+c6) -c2]); 

   r = r(r==conj(r)); 

   r = r(r>0); 

Jr = ((1./(r.^2+1).^2).*(r.^4*c4-2*c5*r.^3+(c1+c6)*r.^2-2*c2*r+c3))'; 

   Q = r(Jr==min(Jr)); 

   J = min(Jr); 

   H = (2/(Q^2+1)^4)*(-2*c5*Q^5+(3*c1-6*c4+3*c6)*Q^4+(-

12*c2+16*c5)*Q^3 ... 

+(-8*c1+10*c3+6*c4-8*c6)*Q^2+(12*c2-6*c5)*Q+(c1-2*c3+c6)); 

Qhat(iter,4) = Q; 
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SigmaQ(iter,4) = 2/H; 

Fit(iter,4) = gammainc(J/2,(2*iter-1)'/2,'upper'); 

  Fit = real(Fit); 

Return 

 

 

4. AWLTS 

%% Set up data for problem 

loadreadonly/Lesson425data.mat 

%% WTLS -- not recursive, uses all data to produce single estimate 

sigmax = sqrt(Sigmax); % std-dev of x 

sigmay = sqrt(Sigmay); % std-dev of y 

Qhat = 5; % purposefully bad initialization of Qhat 

for k = 1:10 

jacobian = sum((2*(Qhat*x-y).*(Qhat*y.*sigmax.^2+x.*sigmay.^2))./... 

                 ((Qhat^2*sigmax.^2+sigmay.^2).^2)); 

hessian = sum((2*sigmay.^4.*x.^2+sigmax.^4.*... 

 (6*Qhat^2*y.^2-4*Qhat^3*x.*y) - ... 

 sigmax.^2.*sigmay.^2.*... 

                (6*Qhat^2*x.^2-12*Qhat*x.*y+2*y.^2))./... 

                ((Qhat^2*sigmax.^2+sigmay.^2).^3)); 

Qhat = Qhat - jacobian/hessian; 

SigmaQ = 2/hessian; 

boundsQ = 3*sqrt(SigmaQ); 

end 

fprintf('WTLS estimate after %d Newton-Raphson iterations: %f +/- 

%f\n',k,Qhat,boundsQ); 

 

%% AWTLS -- recursive, updates estimate every time new data become 

available 

Qnom = 10;                     % Initialize nominal capacity 

SYinit = 1e-4;               % Uncertainty of Q with respect to Qnom 

c1 = 1/SYinit;                 % Correct initialization of c1 recursive value 

c2 = Qnom/SYinit;              % Correct initialization of c2 recursive value 

c3 = Qnom^2/SYinit;            % Correct initialization of c3 recursive value 

% Init c4...c6 assuming SXinit = SYinit to match TLS 

c4 = 1/SYinit;                 % Correct initialization of c4 recursive value 

c5 = Qnom/SYinit;              % Correct initialization of c4 recursive value 

c6 = Qnom^2/SYinit;            % Correct initialization of c4 recursive value 

Qhat = 0*x;                    % Initialize storage for output estimate 

SigmaQ = 0*x;                  % Initialize storage for estimation-error 

variance 
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for k = 1:length(x) 

  c1 = c1 + x(k)^2/Sigmay(k);  % Update c1 recursive parameter 

  c2 = c2 + x(k)*y(k)/Sigmay(k);  % Update c2 recursive parameter 

  c3 = c3 + y(k)^2/Sigmay(k);  % Update c3 recursive parameter 

  c4 = c4 + x(k)^2/Sigmax(k);  % Update c4 recursive parameter 

  c5 = c5 + x(k)*y(k)/Sigmax(k);  % Update c5 recursive parameter 

  c6 = c6 + y(k)^2/Sigmax(k);  % Update c6 recursive parameter 

  r = roots([c5 (-c1+2*c4-c6) (3*c2-3*c5) (c1-2*c3+c6) -c2]); 

  r = r(r==conj(r)); 

  r = r(r>0); 

Jr = ((1./(r.^2+1).^2).*(r.^4*c4-2*c5*r.^3+(c1+c6)*r.^2-2*c2*r+c3))'; 

  Q = r(Jr==min(Jr)); 

  J = min(Jr); 

  H = (2/(Q^2+1)^4)*(-2*c5*Q^5+(3*c1-6*c4+3*c6)*Q^4+(-

12*c2+16*c5)*Q^3 ... 

+(-8*c1+10*c3+6*c4-8*c6)*Q^2+(12*c2-6*c5)*Q+(c1-2*c3+c6)); 

Qhat(k) = Q; 

SigmaQ(k) = 2/H; 

end 

 

xvals = 1:length(Qhat); 

plot(xvals,10*ones(size(Qhat)),xvals,Qhat,[xvals,NaN,xvals],[Qhat+3*sqrt(Sig

maQ),NaN,Qhat-3*sqrt(SigmaQ)]); 

xlabel('Update iteration number'); ylabel('Total capacity estimate (Ah)'); 

title('Output of AWTLS method');   xlim([1 1000]); 

legend('True total capacity','AWTLSestimate','Bounds on 

estimate','location','northeast'); 

 

fprintf('Final AWTLS estimate (using all data): %f +/- 

%f\n',Qhat(end),3*sqrt(SigmaQ(end))); 

  



58 

 

REFERENCES 

 

 

 

1. Bhangu, B.S., Bentley, P., Stone, D. A. & Bingham, C. M. (2005) ‘Nonlinear 

Observers for Predicting State-of-Charge and State-of-Health of Lead-Acid 

Batteries for Hybrid-Electric Vehicles’ - IEEE Transactions on Vehicular 

Technology Vol. 54, No.3, pp.783-794. 

2. Dheenadhayalan, P., Nair, A., Manalikandy, M., Reghu, A., John, J., & Rani, 

V. S. (2015) ‘A Novel Method for Estimation of State of Charge of Lithium-

ion Battery using Extended Kalman Filter’ - SAE Technical Paper 2015-01-

1183. 

3. He, L., Hu, M., Wei, Y., Liu, B., & Shi, Q. (2019) ‘State of charge 

estimation by finite difference extended Kalman filter with HPPC parameters 

identification’ - Science China Technological Sciences, Sci. China Technol. 

Sci. Vol.63, pp.410–421. 

4. He, W., Williard, N., Chen, C., &Pecht, M. (2014) ‘State of charge 

estimation for Li-ion batteries using neural network modeling and unscented 

Kalman filter-based error cancellation’ - International Journal of Electrical 

Power & Energy Systems, Vol.62, pp.783–791. 

5. He, Z., Gao, M., Xu, J., & Liu, Y. (2009) ‘Battery Model Parameters 

Estimation with the Sigma Point Kalman Filter’ - 2009 International 

Conference on Artificial Intelligence and Computational Intelligence, 

Shanghai, China. 

6. Khan, K., Zhou, B., and Rezaei, A., ‘Real-Time Application of Battery State 

of Charge and State of Health Estimation’ - SAE Technical Paper 2017-01-

1199, 2017. 



59 

 

7. Moussalli, Z., BrahimSedra, M., & Ait Laachir, A. (2018) ‘State of Charge 

estimation algorithms in Lithium-ion battery-powered Electric Vehicles’ - 

2018 International Conference on Electronics, Control, Optimization and 

Computer Science (ICECOCS). 

8. Ng, K. S., Moo, C.-S., Chen, Y.-P., & Hsieh, Y.-C. (2009) ‘Enhanced 

coulomb counting method for estimating state-of-charge and state-of-health 

of lithium-ion batteries’ - Applied Energy, Vol. 86, No. 9, pp.1506-1511. 

9. Nguyen Van, C., & Nguyen Vinh, T. (2020) ‘SOC Estimation of the 

Lithium-Ion Battery Pack using a Sigma Point Kalman Filter Based on a 

Cell’s Second-Order Dynamic Model’ - Applied Sciences, Vol.10, No.5, 

pp.1896. 

10. Piller, S., Perrin, M., &Jossen, A. (2001) ‘Methods for state-of-charge 

determination and their applications’ - Journal of Power Sources Vol. 96, 

No.1, pp.113–120. 

11. Sangwan, V., Kumar, R., &Rathore, A. K. (2017) ‘Estimation of model 

parameters and state-of-charge for the battery management system of Li-ion 

battery in EVs’ - 2017 IEEE Transportation Electrification Conference 

(ITEC-India). 

12. Wassiliadis, N., Adermann, J., Frericks, A., Pak, M., Reiter, C., Lohmann, 

B., &Lienkamp, M. (2018) ‘Revisiting the dual extended Kalman filter for 

battery state-of-charge and state-of-health estimation: A use-case life cycle 

analysis’ - Journal of Energy Storage, Vol.19, pp.73–87.  

13. Xiao, B., Shi, Y., & He, L. (2010) ‘A universal state-of-charge algorithm for 

batteries’ - Proceedings of the 47th Design Automation Conference on - 

DAC ’10. 

14. Zhang, F., Liu, L., &Fang , L. (2008)  ‘A Battery State of Charge Estimation 

Method with Extended Kalman Filter’ -  2008 IEEE/ASME International 

Conference on Advanced Intelligent Mechatronics. 



60 

 

15. Zheng, W., Xia, B., Wang, W., Lai, Y., Wang, M., & Wang, H. (2019) ‘State 

of Charge Estimation for Power Lithium-Ion Battery Using a Fuzzy Logic 

Sliding Mode Observer’ - Energies, Vol. 12, No.13, pp.2491. 

16. Zou, Y., Hu, X., Ma, H., & Li, S. E. (2015) ‘Combined State of Charge and 

State of Health estimation over lithium-ion battery cell cycle lifespan for 

electric vehicles’ - Journal of Power Sources, Vol.273, pp.793–803. 

 

 


	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF SYMBOLS AND ABBREVIATIONS
	CHAPTER 1
	Introduction
	1.1 Battery-Powered Vehicles
	1.2 Battery Management Systems (BMS)
	1.3 Battery State Indicators
	1.3.1 State Of Charge
	1.3.1.1 Overview of SOC Estimation
	1.3.1.1. a) Direct Measurement
	1.3.1.1. b) Open Circuit Voltage Method
	1.3.1.1. c) Terminal Voltage Method
	1.3.1.1. d)  Impedance Method
	1.3.1.1. e)  Impedance Spectroscopy Method
	1.3.1.1. f)  Book-Keeping Estimation
	1.3.1.1. g) Coulomb Counting Method
	1.3.1.1. h) Kalman Filtering Method


	1.3.2 State of Health
	1.3.2.1 Need for health estimates
	1.3.2.1. a) Total capacity
	1.3.2.1. b)  Equivalent Series Resistance (ESR)
	1.3.2.1. c) Other cell parameters

	1.3.2.2 Negative-electrode aging
	1.3.2.3 Positive-electrode aging
	1.3.2.3. a) Positive electrode aging at the surface of particles
	1.3.2.3. b) Positive electrode aging in bulk
	1.3.2.3. c) Positive electrode aging in composite electrode




	CHAPTER 2
	Literature Review
	CHAPTER 3
	Equivalent Cell Model
	3.1 Simulation of Battery Cells
	3.1.1 Physics-Based Models (PBMs)
	3.1.2 Equivalent-Circuit Models (ECMs)

	3.2 Components of Equivalent Circuit Model
	3.2.1 Dependent Voltage Source
	3.2.2 Equivalent Series Resistance
	3.2.3 Diffusion Voltage Component
	3.2.4 Hysteresis Voltage Component
	3.3.1 Mathematical Equations describing the ESC cell model

	3.4 Collecting Cell Data for Modelling
	3.4.1 Lab tests to determine OCV relationship
	3.4.2 Lab tests to determine the dynamic relationship

	3.5 Creating ESC model using MATLAB
	3.6 Output of ESC Cell Model

	CHAPTER - 4
	Battery State Estimation
	4.1 SOC Estimation
	4.2   Estimation Techniques of SOC
	4.2.1 Voltage-based methods to estimate SOC
	4.2.2 Poor, current-based method to estimate SOC
	4.2.3 Model-based state estimation

	4.3 The six-step process of Kalman filter
	4.3.1 Deriving the six steps
	4.3.2 Implementing SPKF using the ESC cell model


	CHAPTER 5
	Battery Health Estimation
	5.1 Sensitivity of voltage to R0
	5.2 Sensitivity of voltage to total capacity Q
	5.3 Ensuring correct convergence
	5.4 Weighted total least squares.
	5.5 Goodness of Model Fit
	5.6 Simplified Total Least Squares
	5.7 Deriving the AWTLS Cost Function
	5.8 Output of System

	CONCLUSION
	Future Works

	APPENDIX
	1. OCVfromSOCTemp
	2. SIMCELL
	3. XLSALGOS
	4. AWLTS

	REFERENCES

