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ABSTRACT

Sign Languages are used for communication by the people with hearing and

speaking disabilities. Even though these languages are common within the

community, many people cannot interpret these signs. This creates a “language

barrier” thus inhibiting communication among people with hearing and speaking

disabilities and the others. It is difficult for people to learn all the different sign

languages, since there are many versions. The seemingly big learning curve and

probable infrequent encounters where sign language is used for communication

poses a big challenge for the people with hearing and speaking disabilities to be

understood. This is where a translation application from sign language is useful.

There is significant ongoing research that aims to create models based on deep

learning which are best in class for gesture recognition. The dataset for the hand

signs has been expanding ever since the research began and more and more

accurate models are being developed.

The implementation of a translation application is the main purpose of this

project. Microcontrollers and cameras are used to capture videos and process them

using convolutional and recurrent neural networks. A small dataset was created

specifically for training purposes in this project to counter the resource constraints.

The convolutional and recurrent parts of the network extract the spatial and

temporal features within the video, respectively. They finally predict the class of

the captured video frames, stored in a buffer until being passed to the network. The

predictions from the neural network, mapped to the classes, are then converted into

audio signals which are output by a speaker attached to the microcontroller. Thus

the entire pipeline allows for the people to interpret and understand the sign

language without requiring to learn the sign language itself.
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CHAPTER 1

INTRODUCTION

Sign languages are languages that convey meaning using visual cues with

the help of hand gestures and expressions. These languages have specific grammar

and lexicon that go along with them. They are not universal but have similarities

among them. Thus sign languages are like any other language and have to be

learnt. These languages are primarily used by people who are unable to speak or

hear. Most countries use a specific sign language such as ASL (American Sign

Language) in the USA and Canada, French Sign Language used in France and

British, Australian and New Zealand Sign Language used in their respective

countries. International Sign, formerly referred as Gestuno, is the main language

used in events involving people with hearing disabilities.

1.1 NEED FOR THE PROJECT

Due to infrequent communication using the sign language most people

encounter, it is unlikely that they would be willing to undergo the learning curve

involved. It thus creates situations where the people with hearing or speaking

difficulties are unable to express themselves even if they have a language that they

can communicate with. Also, the diversity makes it very hard to know all the signs

from the various languages. Thus, a translation application that is able to detect the

hand signs and convert it into the required audio signals to be intelligible to the

sign language unschooled. A portable device that can be carried by the people can

avoid the situations where the people are unable to communicate due to sign

language barrier. They can be made compatible with various versions of the sign

language and the user does not require to undergo any learning. It thus enables
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people with hearing and speaking disorders to communicate without any

expectations from the listener.

1.2 SIGN LANGUAGE  GESTURE TRANSLATION SYSTEM

Gesture Translation System aims at capturing the features and their

movement involved in a video having gestures, classifying them, and outputting

them as audio signals. It enables the identification of hand signs made by the users

of the Sign Language and return the word they represent. It helps in alleviating the

inconvenient situations that can occur if people involved in communication use

Sign Language and the listener does not know how to interpret it. It makes it easier

for any Sign Language to be used, thereby avoiding the need to know various signs

for the same word representation. Gesture recognition is done with the help of

models based on deep learning and it is processed further to output audio.

1.3 SOLUTION APPROACH

The gesture translation system is implemented by using a camera,

microcontroller, speaker and learning algorithms. Various libraries like Tensorflow

and PyAudio are used in the process.

The pipeline for sign recognition is as follows,

1. Video frame collection in buffer

2. Passing the frames in the buffer through the neural network

3. The class is predicted and outputted in the form of sound signals

1.3.1. VIDEO FRAME COLLECTION

Camera connected to the microcontroller captures the video feed frame by

frame and stores the individual frames in a buffer. The video is resized to the

required format so as to be compatible to be passed onto the next layer.
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1.3.2 PASSING THE FRAMES THROUGH THE NEURAL NETWORK

The neural networks form the basis of the translation system as they perform

the classification of videos. In contrast to the 2D Convolutional Neural Networks

that can identify images based on spatial features, a model that is capable of

extracting spatial as well as temporal features is required to accommodate the

video data, essentially a collection of images. As the collection of images from a

3D array, 3D CNNs can be used. 2D Convolution and LSTM can be used in

conjunction to perform the same operation. Various other networks like Pose-based

TGCN and Multilayer Perceptrons can be used. The 2D Convolution + LSTM

model provided more accurate results for the dataset created.

1.3.2.1 CONVOLUTIONAL NEURAL NETWORKS

Gesture recognition involves the classification of videos to their appropriate

word classes. A convolutional neural network is a type of model architecture used

in deep learning algorithms. The CNN model is similar to the collection of neurons

present in the brains. The complete convolutional neural network is divided into

feature learning and image classification. This deep learning algorithm contains

input, output and hidden layers.  Feature learning consists of the input layer, the

convolutional layer, ReLU (activation function), and pooling layers. Image

classification is done with the help of flattened, fully connected, softmax layers.

These hidden layers undergo a convolutional operation. The inputs and outputs of

these layers are passed to the activation functions and lastly convolution and

therefore these layers are called as hidden layers.

Since the regular 2D CNNs are not capable of detecting the temporal features, i.e.,

the correlated features between the frames, 3D CNNs can be used.

17



1.3.2.2 3D-CNN

In a 3D-CNN, the frames are taken as 3-dimensional arrays and then passed

onto the layers with convolution operations with 3D filters that capture spatial and

temporal features, thus ensuring the connection between frames is learned by the

model. It helps in capturing motion information that is crucial for identifying the

hand gesture. In a convolution operation on 3-dimensions, a filter is able to

traverse in 3 directions namely the width, height and channels of the respective

image. At every pixel, addition and matrix element-wise multiplication output a

single number. The output from the 3-dimensional convolutional operations are a

3D matrix, due to the fact that the filter traverses through a 3-dimensional domain.

1.3.2.3 LONG SHORT-TERM MEMORY

Long short-term memory (LSTM) is an RNN (Recurrent Neural Networks)

model based architecture which is different from the feedforward neural network

models in that they have feedback connections. It processes both static and

dynamic data like images and videos respectively. This makes LSTM suitable for

processing sequential data such as hand sign videos. A standard LSTM unit

contains input, output and forget gates and a cell. The cell contains the memory of

the values over random time intervals and the input, output and forget gates control

the information that enters and exits the cell.

1.3.2.4 ConvLSTM

Similar to the LSTM network, the ConvLSTM performs convolutional input

transformations and recurrent transformations. So the 3-dimensions of the input is

maintained once the data has passed through the cell. It is therefore suitable to use

ConvLSTM models for classifying images in a time-sequence, or videos.
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1.3.3 CLASS PREDICTION AND AUDIO OUTPUT

The output from the neural network, which is a prediction of the word class

the hand sign belongs to, is then converted to a speech signal, which is then

outputted through a speaker. The libraries like PyAudio perform the text-to-speech

conversion efficiently and thus enabling the complete translation to work.

1.4 ORGANIZATION OF THE CHAPTER

Chapter 2 tells about the Literature survey. Chapter 3 tells about the image

processing technology being used to make image classifications. Chapter 4 informs

about the hardware components of the project which include camera, Raspberry Pi,

and a speaker. Chapter 5 deals with deep learning architecture and algorithms used

for video classification. Chapter 6 lays out the results obtained and its significance.

Chapter 7 tells about the conclusion and future work.
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CHAPTER 2

LITERATURE SURVEY

The work on Word-level Deep Sign Language Recognition from Video: A

New Large-scale Dataset and Methods Comparison is carried out by Dongxu Li et

al (2019) published on the IEEE Winter Conference on Applications of Computer

Vision (WACV) which presented a review about the popular methods and

algorithms under use for Sign Language Recognition like Temporal 3D-CNNs and

Pose Based TGCNs alongside the comparison between some of those popular

models. The research on Large-scale Video Classification with Convolutional

Neural Networks done by Andrej Karpathy et al (2014) published on IEEE

Conference on Computer Vision and Pattern Recognition, provided a look into the

performance of Convolutional Neural Networks on video datasets for activity

recognition using the Sports-1M dataset. The research based on Gesture

Recognition in RGB Videos Using Human Body Keypoints and Dynamic Time

Warping carried out by Pascal Schneider et al (2019) published on Lecture Notes in

Computer Science, Vol. 11531., Springer, Cham., provided information about the

performance of One-Nearest-Neighbour with the help of OpenPose and Dynamic

Time Warping in the UTD-MHAD dataset.

The work on Fast and Robust Dynamic Hand Gesture Recognition via Key

Frames Extraction and Feature Fusion carried out by Hao Tang et al (2019)

published on Neurocomputing, Volume 331, showed the performance of

Keyframes extraction and Feature Fusion techniques on the Cambridge dataset.

Real-Time Hand Gesture Spotting and Recognition using RGB-D Camera and

3D-Convolutional Neural Network, done by Dinh-Son Tran et al (2019), published

Proceedings of the 2018 International Conference on Machine Learning and

Machine Intelligence, provided a results about the efficacy of 3D-CNNs on the

20



data obtained from RGB-Depth cameras which gave additional depth information.

The work on Dynamic Hand Gesture Recognition using 3D-CNN and LSTM with

FSM Context-Aware Model, done by Noorkholis Luthfil et al (2019), Sensors

(Basel), provided insight into the usage of a combination of 3-Dimensional

Convolutional Neural Networks, Long Short-Term Memory and Finite State

Machine for hand gesture recognition.

The work on An Efficient Method for Human Hand Gesture Detection and

Recognition using Deep Learning Convolutional Neural Networks, done by P.S.

Neethu et al (2020), published in Springer Nature, provided information about the

use of CNNs for image classification using segmentation filters. It provides insight

into image filtering where the hand region is segmented from the whole image

using mask images. The research on Sign Language Recognition Using Deep

Learning on Custom Processed Static Gesture Images, done by Aditya Das et al

(2018), published at the International Conference on Smart City and Emerging

Technology, provided information about the usage of Inception v3 CNN network

on static images. The work on Real-time American Sign Language Recognition

with Convolutional Neural Networks, done by Brandon Garcia et al (2016), where

the GoogLeNet architecture is used for classification of ASL dataset.

The work on Deep Learning for Sensor-based Human Activity Recognition:

Overview, Challenges and Opportunities, done by Kaixuan Chen et al (2020),

provides an overview of the activity recognition using sensor-based systems rather

than video-based systems. The research on Human Activity Recognition Using

Deep Learning: A Survey, done Zhang HB et al (2019), published on the Lecture

Notes on Data Engineering and Communications Technologies, Volume 52,

provides insights into the state of the art for human activity recognition and

compares various methods. The work on Human activity recognition using

magnetic induction-based motion signals and deep recurrent neural networks,
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carried out by Negar Golestani et al (2020), provides information about

recognizing human physical activities using wireless sensor networks and magnetic

induction systems along with machine learning techniques to detect human motion.

The work on Convolutional LSTM Network: A Machine Learning Approach for

Precipitation Nowcasting done by Xingjian Shi et al (2015), published in the

NeurIPS, presented a review on the ConvLSTM network and a comparison of

performance with a Fully-Connected LSTM.
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CHAPTER  3

COMPUTER VISION

3.1 INTRODUCTION

Computer Vision is a field of study where machines are trained to interpret

and understand images and videos, along with their underlying context. Computer

Vision in general, aims to mimic the human visual capabilities using a computer.

CV covers the process of acquiring, processing, analyzing and interpreting visual

data to produce helpful outputs. It has found its use case in many diverse fields

such as solid-state physics, neurobiology, signal processing, robotics, etc.

Sub-domains of the computer vision include,

● Object Recognition

● Pose Estimation

● Motion Estimation

● Event Detection

● Learning

3.1.1 APPLICATIONS

1. The quality and produce amount for crops like wheat and rice are used to

identify the food security stability. Computer Vision applications allow

continuous and non-destructive monitoring of growth of crops and

managing requirements for nutrients.

2. It is used in the medical industry for identifying tumours, organ dimension

measurements, flow of blood, etc.

23



3. CV is used in the military for figuring out enemy vehicles, soldiers, and

aids missile guidance.

4. It is essential in autonomous vehicle applications like, submersibles, rovers,

Unmanned Aerial Vehicles, etc.

3.2 IMAGE PROCESSING

Image processing technique is the application of algorithms to images so that

the images are transformed and useful information is obtained from it . The input

and output during processing may be images or image characteristics.

Pre-processing is one form of image processing, where the aim is to prepare the

images such that they are suitable for an algorithm to be performed on them. Image

processing is a subset of computer vision. Image processing is used hand-in-hand

with other machine learning algorithms, in order to achieve computer vision.

There are three basic phases in image processing. They are,

● Data collection in the form of images

● Image analysis and manipulation

● Output

Image processing techniques done to two-dimensional visual data like

images and videos. Various functions are used for filtering and enhancing the

images, so that information could be extracted from them.

Initially image processing was used to improve the quality of the lower

quality images. But, due to constraints of the computing equipment during the

early days the cost of processing was high. After the development of dedicated
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hardware and powerful computers the images could be processed in real-time and

even cheaper.

3.3 FEATURES

Features are problem dependent characteristics that can be stated as an

interesting or a required part/region of the image. It is the starting point of the

various CV pipelines. Features play an important role in every algorithm and hence

the final algorithm’s efficacy is reliant on the feature detectors’ efficiency. Thus

desirable property for a feature detector is repeatability, that is, if feature detectors

can identify the same features in various images.

Types of Features

1. Edges

The edge in general is an arbitrary shape of an object. In practice, it is

a set of points in the images with a higher magnitude in gradients.

2. Corners

It is a point-like feature in the frame of an image that is a 2D matrix.

3. Blobs

Blob provides a supporting representation of the image structure based

on the region. It detects the area in the image which is very smooth that

cannot be detected by the corners.

4. Ridges

Ridges are 1D curves that denote symmetry axes.

3.4 FEATURE DETECTION
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Feature detection is a low-level operation or the first operation performed on

the matrix of images and it examines every pixel to identify the presence of the

features in the pixels. The input is smoothened by a Gaussian kernel, as a

mandatory requirement for feature detection, and feature images are calculated and

expressed as local image derivative functions. When feature detection requires

high computer resources and time, a high-level algorithm is used to continue the

flow of data to the feature detection phase, so that the algorithm searches for

features in specific regions, masking out unwanted regions. Various CV methods

use feature detection in their first step and leads to development of numerous

feature detectors. They differ based on the features detected, repeatability the

computational complexity.

3.5 FEATURE EXTRACTION

Feature extraction represents the shape information contained in data to ease

the classification. In feature extraction the resources required to represent data are

reduced. Thus, the main goal of feature extraction is to represent that information

in a low dimension space and obtain the necessary information from the data.

When the input contains huge redundancies that lead to a large data, it is reduced to

a set of features called feature vectors. The transformation of the input data into the

set of features is called feature extraction.

If the features extracted are selected diligently, the amount of processing

done is significantly reduced, because the entire image does not need to be

processed. Pattern recognition is one of the emerging fields of research in the area

of image processing. The application of image processing is character recognition,

health insurance, document verification, loan, extracting information from cheques,
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applications for credit cards, reading bank deposit slips, data entry, tax forms,

check sorting, etc.

Feature extraction is an essential phase in pattern classification and aims at

the extraction of the necessary data that represents each class. In this process, the

required features are obtained from data to produce feature vectors. These feature

vectors help the classifiers to identify the input with the target output. Thus,

choosing a proper feature extraction technique corresponding to the input requires

care.

In our proposed solution, a Deep Neural Network is used for the extraction

of features from the images.The network is trained such that the neural network

figures out the best features to extract in order to identify and classify the inputs it

is provided with. The training occurs based on the dataset provided.

3.6 DATASET

Dataset is a collection of data with an input and output relation. This is

considered as a single unit by the machine. Datasets are used for extracting the

expected features from the image. There are different types of datasets that can be

used for learning. It could contain labeled images in their specific class folders or it

could be a document containing the path to the image alongside its class. Dataset

plays an important role in the setting up of the expected feature. The efficacy in

application of the approaches can be evaluated on the dataset, the larger the dataset

the better is the model to be built.
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Fig. 3.1   Representation of labelled data

A set of videos were recorded for creation of the dataset, which represented four

classes representing words frequently used, expressed in the American Sign

Language and one class for identifying the absence of any meaningful gesture
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being performed. The classes thus comprise the words "Hello", "Yes", "No",

"Friend" and "No Action".

The videos are split into train and test sets for performing validation of the

dataset. There are about 50 videos for each class in the train dataset and about 15

videos for each class in the test dataset. A total of about 330 videos are used for the

entire training process.
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CHAPTER 4

HARDWARE DESCRIPTION

4.1 RASPBERRY PI

The Raspberry Pi is a single-board computer, that is small-sized, and by the

Raspberry Pi Foundation with the main purpose of developing the teaching of basic

computing in schools.

Broadcom BCM2835, a System-on-Chip that contains an ARM1176JZFS with

floating point, running at 700 MHz, and a Video core 4 GPU makes this computer

so small and powerful. The GPU affords hardware-accelerated OpenVG, and

1080p30 H.264 high-profile decode, OpenGL ES 2.0 and is capable of 1Gpixel/s,

1.5Gtexel/s, or 24 GFLOPs of a general-purpose computer. It comes with Model A,

Model B, and Model B+.

Table 4.1 Comparison of Model A, Model B, and Model B+

Model RAM USB Sockets Ethernet Ports

A 256 MB 1 No

B 512 MB 2 Yes

B+ 1 GB 4 Yes
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4.1.1 Hardware

The operating system must use network time as it does not come with a

real-time clock.

Fig. 4.1 Raspberry pi model B+ and its pin configuration

The Raspberry Pi is a device that consists of program memory (RAM),

processor and graphics chip, Xbee socket, UART, Ethernet port, GPIO pins, power

source connector, CPU, GPU,and various interfaces for other external devices. It

also requires an SD flash memory card to boot.
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Power source

This device consumes 700mA or 3W or power. It can be powered by a

Micro USB charger or the GPIO header. The work of powering the Pi can be done

by any good smartphone charger. 

SD Card

There is in-built storage in the Pi. The operating system is stored on an SD

card which can be used with the Pi’s SD card slot. The operating system is stored

through a card reader.

CPU (Central Processing Unit)

The Central processing unit is the brain of the raspberry pi board which is

responsible for carrying out the instructions of the computer through logical and

arithmetical operations. The Raspberry Pi 3 Model B uses a Broadcom BCM2837

SoC with a 1.4 GHz 64-bit quad-core ARM Cortex-A53 processor, with 512 KB

shared L2 cache. ARM11 series processor is used by the raspberry pi. The

Raspberry Pi chip is operating at 700 MHz and it will not become hot enough to

need a heatsink or special cooling.

GPU (Graphics Processing Unit)

The GPU is a specially designed chip in the raspberry pi board and that is

designed to speed up the operation of image calculations. It is also designed with a

Broadcom video-core IV and it supports OpenGL.

USB 2.0 Port
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USB 2.0 ports are the means to connect input devices such as a mouse,

keyboard to the Raspberry pi. There is only one port on model A, two on model B,

and four on model B+. The number of ports can be increased by using an external

power USB hub switch which is available as a standard Pi accessory.

Ethernet port

The main way for communicating with additional devices is the ethernet

port. This port is used to connect the Pi to the internet.

GPIO Pins

General-purpose input/output (GPIO) pins are standard I/O pins in ICs

whose characteristics, including whether input or output mode, can be controlled at

run time by the user.

The GPIO pins are used to associate the controller with the other electronic

boards. The pins are coded as input and output in the program. The Pi has digital

GPIO pins. The pins connect to various electronic components like ultrasonic

sensors and cameras to transmit data in digital format as well. GPIO pins can be set

as input or output, can be enabled/disabled, inputs are readable (typically high=1,

low=0) and outputs are writable/readable.

4.1.1.1 Model B+ Specifications

• Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit SoC at 1.40 GHz

• 1.0 GB LPDDR2 SDRAM

• 2.40 GHz and 5.0GHz IEEE 802.11.b/g/n/ac wireless LAN, Bluetooth 4.2,

BLE
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• Gigabit Ethernet over USB 2.0 (maximum throughput of 300 Mbps)

• Extended 40-pin GPIO header

• Full-size HDMI

• 4 USB 2.0 ports

• CSI camera port

• DSI display port

• 4-pole stereo output and composite video port

• Micro SD port

• 5V/2.5A DC power input

• Power-over-Ethernet (PoE) support

4.1.2 Need for Raspberry pi

• The main advantage of Raspberry Pi is its small size and relatively high

power.

• One other advantage of Raspberry Pi is that it speeds up solving problems

using hardware compared to the software implementation.

• It also makes use of parallelization.

• Lower power consumption.

4.1.3 Setting up Raspberry pi

The Raspberry Pi is not generally provided with an operating system. To set

up Raspberry Pi,

● Download an ISO disk image from the raspberrypi.org site and then extract

the folder contained in the zip file to some convenient location.

34



• Use the Raspberry Pi imager to install the Raspbian on the SD card.

•  Wait till the Raspberry Pi Imager to finish writing into the SD card.

•  Eject the SD card safely after writing.

• Insert the SD card and set it up with Raspbian into the microSD card slot on

the bottom of the Raspberry Pi.

•  Turn on the USB power supply and connect it to the Raspberry Pi’s power port.

• After Raspbian has been installed, click OK. Now Raspberry Pi will restart,

and Raspbian will then boot up.

•  After some time the Raspbian Desktop will appear.

4.2 CAMERA

Logitech Webcam C170 is used here. Logitech’s Fluid Crystal

Technology is used and the VGA sensor allows video calling at 30 fps with 640 X

480 resolution. It can capture video at 1024 X 768 resolution. It captures images at

5 megapixels. This camera captures the surrounding objects and these images are

processed by using Deep learning algorithms. Any custom camera that could

reduce the size of the device could be used. This camera is used for the sake of

ease of implementation.

Fig. 4.2  Logitech webcam C170

4.2.1 System requirement
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•        Processor Speed 1.0 Hz

•        Minimum RAM Size 512.0 MB

•        Minimum Hard Drive Space 200.00 MB

4.2.2 Features

•        Video Captures at 320x240, 640x480, 1024x768

•        Optical Resolution: 640x480

• Size is 21.30 x 15.50 x 7.90 cm

•        Weight of 0.5lb

4.3 SPEAKER

Grove compatible generic speakers are used for outputting audio signals. It

is appropriate for single audio signalling and sound generation. It is equipped with

a potentiometer to adjust loudness and to clear sound out of a microcontroller.

Different tones can be generated using the speaker with different input frequencies.

Fig. 4.3 Speaker module

4.3.1 Specifications

● Operating Voltage (VDC) - 4 to 5.5

● Voltage Gain (dB) - 46

● Bandwidth (KHz)              - 20
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● Length (mm)                      - 130

● Width (mm)                        - 90

● Height (mm)                       - 6

● Mounting hole diameter(mm) - 2

● Weight (gm)                              - 12

● Shipment weight                       - 0.016 Kg

● Shipment dimensions               - 9.5 × 6.8 × 1.2 cm

CHAPTER 5
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DEEP LEARNING

5.1 EVOLUTION OF DEEP LEARNING

Machine Learning is a subset of artificial intelligence associated with creation

of algorithms that can modify themselves without human intervention to get the

desired result with the use of structured data. These ML algorithms are designed to

learn, by understanding labeled data and then use it to produce new results with

more datasets. Machine Learning algorithms build a mathematical model based on

sample data in order to make predictions or decisions without being explicitly

programmed to perform the task. There are many machine learning approaches

such as supervised learning, unsupervised learning, semi-supervised learning,

reinforcement learning.

However, they need to be retrained through human intervention when the

actual output isn’t the desired one. Since there were many limitations in Machine

learning algorithms, one of the algorithms which brought a revolution in modern

society is Deep Learning. Deep Learning allows computational models that are

composed of multiple processing layers to learn representations of data with

multiple levels of abstractions. These methods have dramatically improved the

state of the art in speech recognition, visual object detection, object detection, and

many other domains too.

Deep Learning is a subset of machine learning where algorithms are created

and function similarly to machine learning, but there are many levels of these

algorithms, each providing a different interpretation of the data it conveys. This

network of algorithms is called Artificial Neural Networks. Deep learning

networks do not require human intervention, as multilevel layers in neural

networks place data in a hierarchy of different concepts, which ultimately learn
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from their own mistakes. A deep learning architecture is a multi-layer stack of

simple modules, all of which are subject to learning, and many of which compute

non-linear input-output mappings.

5.1.1 Neural Network

As explained above, Deep learning is a sub-field of Machine learning dealing

with algorithms inspired by the structure and function of the brain called ANN. It

is similar to our nervous system, where each neuron is connected to other neurons

and passing information.

Fig. 5.1 A basic Neural Network structure

5.2 CONCEPTS OF DEEP LEARNING NEURAL NETWORK

Linear Regression
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It is a statistical method that allows us to summarize and study the

relationships between two continuous variables. The output is plotted in a graph as

dot points. Based on the points near the straight line, the final output is predicted.

Logistic Regression

It is a statistical method for analyzing a dataset in which one or more

independent variables determine an outcome. The outcome is measured in which

there are only two possible outcomes: True or False. In logistic regression, similar

to linear regression, it will find the best possible straight line that separates the two

classifications.

Activation Function

Activation functions are the functions that decide the actual output and

therefore output of these layers as its ‘activations’. There are many types of

activation functions present.

Weights

When input data comes into a neuron, it gets multiplied by a weight value

that is assigned to this particular input. These weights start out as random values,

and as the neural network learns about the nature of input data it leads to, the

network adjusts the weights based on any errors in categorization that the previous

weights resulted in and this is mentioned as training. Once the network is trained, it

can be used for predicting the output for similar input.

Bias

Both weights and biases are the learnable parameters of the deep learning

models. It is a value-added to each layer’s output.
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Forward Propagation

By propagating from the first layer (input layer) through all the

mathematical functions represented by each node, the network outputs a value.

This process is called Forward pass.

Gradient Descent

Gradient descent is an optimization algorithm used to find the values of

parameters (coefficients) of a function (f) that minimizes a cost function (cost).

Gradient descent is best used when the parameters cannot be calculated

analytically (e.g. using linear algebra) and must be searched for by an optimization

algorithm. Gradient descent is used to find the minimum error by minimizing a

“cost” function.

Back propagation

In neural networks, Forward Propagation is done to get the output and it is

compared with the real value to get the error. In order to minimize the error,

backward propagation is done by finding the derivative of the error with respect to

each weight and then subtracting this value from the weight value. This is called

Back propagation.

Modeling of Artificial Neurons

It depicts a neuron connected with n other neurons and thus receives n inputs

(x1,x2,…xn). This configuration is called a Perceptron. The inputs (x1,x2….) and

41



the weights (w1,w2….) are real numbers and can be either positive or negative.

The perceptron consists of weights, a summation processor, and an activation

function.

Fig. 5.2 Modelling of Artificial Neurons

One particular type of deep, feedforward network that was much easier to

train and generalized much better than networks with full connectivity between

adjacent layers. This was the Convolutional Neural Network (ConvNet).

5.3 CONVOLUTIONAL NEURAL NETWORK (CONVNET)

In neural networks, Convolutional Neural Network is one of the main

categories to perform image recognition, image classification, object detection,
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recognizing faces, etc,.. are some of the areas where CNN’s are widely used.

ConvNets are designed to process data that come in the form of multiple arrays, for

example, a color image composed of three 2D arrays containing pixel intensities in

the three color channels. Many data modalities are in the form of multiple arrays:

1D for signals and sequences, 2D for images, and 3D for video or volumetric

images.

The architecture of a typical ConvNet is structured as a series of stages. The

first few stages are composed of convolutional layers and pooling layers. Units in a

convolutional layer are organized in feature maps, within which each unit is

connected to local patches in the feature maps of the previous layer through a set of

weights called a filter. The result of this locally weighted sum is then passed

through a non-linearity function. All units in a feature map share the same filter

bank. Different feature maps in a layer use different filter banks. Mathematically,

the filtering operation performed by a feature map is a discrete convolution. Also,

if the pixel size is large, learning and computation will be more. Therefore, the

convolution operation is made so that large pixels can be detected and hence the

name convolution.

Although the role of the convolutional layer is to detect local conjunctions of

features from the previous layer, the role of the pooling layer is to merge

semantically several features into one. A typical pooling unit computes the

maximum of a local patch of units in one feature map. Neighboring pooling units

take input from patches that are shifted by more than one row or column, thereby

reducing the dimension of the representation. Two or three stages of convolution,

non-linearity, and pooling are stacked, followed by more convolutional and

fully-connected layers. Backpropagating gradients through a ConvNet is simple as
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through a regular deep network, allowing all the weights in all the filter banks to be

trained.

Fig. 5.3 An example of a CNN architecture

5.4 LAYERS OF CNN

CNN’s image classification takes an input image, processes it, and classifies it

under various categories depending on the dataset it is being trained on. The

computer sees an image as an array of pixels and it depends on the image

resolution. Technically, Deep learning CNN models to train and test, each input

image will pass it through a series of convolution layers with filters (kernels),

pooling and fully connected layers, and a classification layer.

5.4.1 Convolutional Layer

The convolutional layer is the first layer to extract features from an input

image. It preserves the relationship between pixels by learning image features

using small squares of input data. Convolution is the mathematical operation that

takes two inputs such as an image matrix and a filter or kernel. The image matrix

has a dimension of h x w x d and a filter of dimension as fh x fw x d. It outputs a
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volume dimension of (h - fh + 1) x (w – fw + 1) x 1. The output obtained is

mentioned as a ‘feature map’. Always, the number of channels in the filter should

match the number of channels in the input image.

Strides

Stride is the number of pixels that shift over the input matrix. For example,

if the stride is 1, then the filter moves 1 pixel at a time.

Padding

Sometimes in the convolution process, output shrinks at each layer and a lot

of information is lost. Also, there is a possibility where the filter does not perfectly

fit the input image. There are two types: valid convolution and same convolution.

In “valid” convolution, no padding occurs and only keeps the valid part of the

image. In “same” convolution, padding occurs such that the output size of the

image should be the same as that of the input image.

Non-Linearity function

ReLU stands for Rectified Linear Unit for a non-linear operation. The

important usage of the ReLU function is that ConvNet should learn non-negative

linear values. The output is f(x)=max (0,x). Though there are many nonlinear

functions, ReLU’s performance is better than other functions.
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Fig. 5.4 Example for ReLU function

5.4.2 Pooling Layer

ConvNets use a pooling layer to reduce the size of the representation, to

increase the speed of computation as well as make some features that detect a bit

more robust. This layer would reduce the number of parameters when the image

size is too large. Spatial pooling is also called subsampling or downsampling

which reduces the dimensionality of each map but retains some important

information. It is of different types:

Max Pooling

Max Pooling takes the largest element from the rectified feature map. This

type of pooling is generally used in all architectures.

Min Pooling

Min Pooling takes the smallest element from the rectified feature map in

accordance with the filter size.

Average Pooling

Average pooling returns the average of all the values from the portion of the

image covered by the kernel.

5.4.3 Fully Connected Layer

After several hidden layers, the high-level reasoning in the neural network is

done via Fully-connected layers. The fully Connected Layer involves weights,

biases, and neurons. Here, neurons in one layer are connected to neurons in another
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layer. In this FC layer, the matrix is flattened into a vector form and fed to a neural

network. The below image is an example of a flattened FC layer.

Fig. 5.5 Example for Fully Connected Layer

The matrix is flattened into a vector form as x1, x2, x3, x4 and the output

consists of three classes such as y1, y2 and y3. Also, backpropagation is applied to

every iteration of training. Over a series of epochs, the model is able to identify the

dominant features and is classified using the SoftMax layer. This SoftMax layer is

a multi-class classifier that classifies the objects based on training datasets and

provides a confidence value.

5.5 CNN ARCHITECTURE
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There are many architectures used for the implementation of Convolutional

Neural Networks. Almost all the CNN architectures follow the same general design

principles for processing the input. It can be classified into Classic network

architectures and Modern architectures. Classic network architectures include

LeNet-5, AlexNet and VGG 16. Modern architectures include GoogleNet, ResNet,

etc.

Static images in sign languages are used to represent alphabets and numbers.

They are used when the user of sign language has to spell out some special words

such as names or express numbers. But when it comes to representing words, the

expressions are not static, rather they require movement of the hand, which is

captured in the form of videos. Videos are represented as a sequence of frames or

images. They are essentially 3-dimensional arrays composed of 2D images spread

over time.

Although CNNs perform well with images, their ability is limited to

extraction of spatial features within the image, i.e., only features in 2 dimensions.

When working with videos, extracting temporal features, i.e., time-related features

along with the spatial features is necessary. This is because videos are a collection

of images or frames over time, i.e., they are a time-distributed sequence of frames.

Along with the features present within an image, the inter-relations between the

different images in the sequence should be extracted. 2D-CNNs, while being able

to capture the spatial features within the image in a video, does not extract the

temporal information that is provided by the sequence. Hence, 2D-CNNs are not

the most suitable if we have to extract the time-spaced information between the

frames of a video sequence.

5.6 RECURRENT NEURAL NETWORK (RNN)
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A recurrent neural network is another neural network architecture where the

connections between nodes is in the form of a directed graph along a temporal

sequence. RNNs can use their internal state to process variable length sequences of

inputs. This internal state or memory enables them to take information from prior

inputs to affect the current input and output. Recurrent Neural Networks use

backpropagation through time (BPTT) algorithm to determine the gradients, which

is different from traditional backpropagation as it is specific to sequence data.

Fig. 5.6 Recurrent Neural Network architecture

A feed-forward neural network can be converted into a RNN as shown

below.

Fig. 5.7 Composition of an RNN from a dense neural network
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The nodes in the different layers of the neural network are combined to form a

single layer of RNN, with network parameters A, B and C.

There are four types of RNN, which are shown below.

Fig. 5.8 (a) One to One Fig. 5.8 (b) One to Many
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Fig. 5.8 (c) Many to One Fig. 5.8 (d) Many to Many

RNNs have two common issues: vanishing gradient and exploding gradient.

5.6.1 Vanishing Gradient Problem

The gradients carry information used in the RNN, and when the gradient becomes

too small, the parameter updates become insignificant. No useful gradient

information from the output end of the model is propagated to the layers near the

input of the model. Longer the sequence is, the smaller the gradient tends to

become. This makes the learning of long data sequences difficult. The models

become unable to learn on a given dataset, or prematurely converge to a

non-optimal solution.
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Fig. 5.9 Represents the possibility of losing information due to vanishing

gradient

5.6.2 Exploding Gradient Problem

While training a neural network, if the slope tends to grow exponentially instead of

decaying, this is called an Exploding Gradient. This problem arises when large

error gradients accumulate, resulting in very large updates to the neural network

model weights during the training process.

Long training time, poor performance, and bad accuracy are the major issues in

gradient problems.

5.7 LONG SHORT-TERM MEMORY (LSTM)

Long Short-Term Memory is an RNN architecture that has feedback

connections, unlike the standard feedforward neural networks. The model passes

the previous hidden state to the next step of the sequence, which allows the

network to include the previous data in the decision making process.

52



Fig 5.10 Long Short-Term Memory architecture

A common LSTM unit contains a cell, an input gate, an output gate and a

forget gate. The cell retains values over time intervals and the gates regulate the

flow of information in and out of the cell. They solve the vanishing gradient

problem faced by vanilla RNNs, because LSTM units allow gradients to flow

unchanged.

The key to LSTMs is the cell state, the horizontal line running through the top of

the diagram. It runs straight down the entire chain, with only some minor linear

interactions. It’s very easy for information to just flow along it unchanged.

The LSTMs have the ability to remove or add information to the cell state,

regulated by structures called gates. Gates allow to optionally let information

through. They are composed out of a sigmoid neural net layer and a pointwise

multiplication operation.
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5.7.1.1 Forget Gate

The forget gate decides what information should be thrown away or kept.

Information from the previous hidden state and information from the current input

is passed through the sigmoid function. Values come out between 0 and 1. The

closer to 0 means to forget, and the closer to 1 means to keep.

5.7.1.2 Input Gate

To update the cell state, we have the input gate. First, the previous hidden

state and current input are passed into a sigmoid function. That decides which

values will be updated by transforming the values to be between 0 and 1. 0

corresponds to values being unimportant, and 1 corresponding to values being

important. The hidden state and current input are passed into the tanh function to

squish values between -1 and 1 to help regulate the network. Then the tanh output

is multiplied with the sigmoid output. The sigmoid output will decide which

information is important to keep from the tanh output.

5.7.1.3 Cell State

To calculate the cell state, first, the cell state gets pointwise multiplied by the

forget vector. Values in the cell state could be dropped if it gets multiplied by

values near 0. Then we take the output from the input gate and do a pointwise

addition which updates the cell state to new values that the neural network finds

relevant. That gives a new cell state.

5.7.1.4 Output Gate

The output gate decides what the next hidden state should be. The hidden

state contains information on previous inputs and is also used for predictions. First,

the previous hidden state and the current input are passed into a sigmoid function.
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Then the newly modified cell state is passed to the tanh function. The tanh output

is multiplied with the sigmoid output to decide what information the hidden state

should carry. The output is the hidden state. The new cell state and the new hidden

is then carried over to the next time step.

The steps taken under one LSTM cell are shown below.

Fig. 5.11 (a) Forget gate decision Fig. 5.11 (b) Input gate decision

Fig. 5.11 (c) Updating the old cell state Fig. 5.11 (d) Output gate decision

into the new cell state

5.8 CONVLSTM LAYER

ConvLSTM layers are similar to the LSTM layer, except the internal matrix

multiplications within the images are exchanged with convolution operations,

which tend to work well for image data. Although a Fully Connected LSTM layer
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is powerful for handling temporal correlation, it contains too much redundancy for

spatial data. To avoid this ConvLSTMs, which possesses convolutional structures

in both input-to-state and state-to-state transitions can be used in place.

Some of the important equations are,

it = σ(Wxi ∗ t + Whi ∗ + Wci ◦ C + bi)

ft = σ(Wxf ∗ t + Whf ∗ + Wcf ◦ C + bf )

Ct = ft ◦ C + it ◦ tanh(Wxc ∗ t + Whc ∗ + bc)

ot = σ(Wxo ∗ t + Who ∗ + Wco ◦ Ct + bo)

Ht = ot ◦ tanh(Ct) []

Fig. 5.12 Structure of a ConvLSTM network.

Due to their effectiveness on image-based time sequences a ConvLSTM neural

network was chosen for this project.
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CHAPTER 6

PROPOSED METHODOLOGY

Sign Language translation is split into three stages, namely, video capturing,

prediction, and conversion of text-to-speech so that audio signals can be outputted.

The pipeline involves the usage of camera and speakers, interfaced with the

microcontroller, Raspberry Pi.

Fig. 6.1 Block diagram of the recognition and translation process

STEPS:

1. The camera interfaced with the Raspberry Pi captures the video

frame-by-frame.

2. The frames are stored in a buffer for a certain duration.

3. The frames in the buffer are then passed onto the neural network for

prediction of classes.

4. Outputting the predicted class in the form of audio signals through the

speaker using text-to-speech conversion.
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6.1 CAMERA

The camera connected to the microcontroller through USB, captures the

video frame-by-frame, which is stored in a buffer that can hold 80 frames. The

frames are captured at 30 frames per second and each image is resized to 64 x 64

pixels. Therefore the input is in the shape of (80, 64, 64) representing the number

of frames, image height and width respectively.

Resizing of images is done to reduce the load on the network while training

and processing, as much of the spatial features remain the same even after the

resolution is reduced multifold. 80 frame buffer is chosen to normalize the video

sequence length, which is usually varies due to the 2 - 4 seconds of clip time

corresponding to the gesture being shown, to a constant value.

OpenCV library is used for capturing the image in frames. OpenCV is an

open source, computer vision library that contains various functions for performing

image processing and video processing operations. This makes it suitable for

gesture recognition.

6.2 PROPOSED DEEP LEARNING ALGORITHM

A ConvLSTM deep neural network is used for predicting the classes from

the given input video sequence. Tensorflow library is used for performing the

neural network related operations. Other data handling libraries such as numpy and

sci-kit learn are used to aid in the training process. The input should be made

compatible with the neural network and hence the appropriate buffer is used to

store the frames. A multi-class classification is performed on the data, so as to

choose 1 from the 5 given classes. Thus, after prediction the class the video is

corresponding to can be obtained.
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Fig. 6.2 The proposed neural network architecture

6.2.1 ConvLSTM Layer

A ConvLSTM layer is similar to a regular LSTM layer except that the

internal matrix multiplications are exchanged for convolution operations. The

ConvLSTM layer accepts a 4-dimensional input of (number of frames, image

height, image width, number of filters). There are two ConvLSTM layers used with

the first one having 64 convolution filters and the second one having 8 filters. This

results in the first layer having an input shape of (80, 64, 64, 64) and the second

layer having an input shape of (80, 64, 64, 8). Since “same” padding is used the

dimensions of the image are retained for the first two layers involving

convolutions. The return_sequences is made true for the first ConvLSTM layer so

that it can pass the 80 frames given to it as input, to the next ConvLSTM layer.
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Batch normalization is applied after each ConvLSTM layer in order to

standardize the input to a layer for every mini-batch, thus stabilizing the learning

process and reducing the number of epochs required to train the network.

6.2.2 Dense layer

Once the ConvLSTM layers extract the spatial and temporal features within

the input, the neural network implements a flatten layer to create a 1-dimensional

array for further processing with the dense layers. The dense layer consists of

neurons that are interconnected to all the input and output neurons. This dense

layer allows the extracted features to be used in the prediction of classes. The

hidden layer contains 128 neurons and they are used with dropout to avoid the

problem of overfitting. Finally, these neurons are connected to 5 output neurons

representing the classes contained in the data. Since multi-class classification is

used, the output layer uses a SoftMax function as activation and the class with the

highest probability is chosen as the correct class.

Fig. 6.3 An example of the softmax function
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6.3 AUDIO OUTPUT

Once the neural network predicts the class of the video sequence the class

text is converted into sound signal. This is attained with the help of the

Python-Text-To-Speech library. The audio is outputted through the speaker

connected as a peripheral device to the microcontroller.

The engine object of the pyttsx3 library is used to set the rate, volume and

voice of the instance running. This helps to customize our output corresponding to

the situation. The analog output is attained using the 3.5mm audio jack.

Once the audio is outputted, the buffer is released and new frames are

collected and stored in the buffer. This process continues on, thus enabling

translation of the signs performed.
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CHAPTER 7

RESULT ANALYSIS

Sign language translation, with the advancement in hardware and algorithms

to be run on those powerful hardware, could eliminate the gap between the

differently-abled and others. A portable device that is able to translate sign

language would help the people with hearing and speaking difficulties, in various

social and work environments.

This chapter deals with the results obtained at the various stages of the

implementation. The dataset is very crucial for improving the ability of a network

in learning the required features and ultimately, the performance of the network.

7.1 RESULTS FROM THE COLLECTION OF DATASET

Fig. 7.1 Organization of the dataset into train and test sets

Fig. 7.2 Organization of the classes to be trained
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Fig. 7.3 Collection of videos of a class

Fig. 7.4 A 640 x 480 frame
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Table 7.1. Organization of the classes representing words

CLASS TRAIN DATA TEST DATA

Hello 50 16

Yes 50 16

No 51 16

Friend 50 15

No Action 50 16

The dataset was captured using the webcam with the help of OpenCV library

and stored such that each directory represents a class with the videos of that class

inside the directory. Three different people perform signing for the classes. Each

video is 2-4 seconds long, with a frame rate of 30 frames per second, and in the

".MP4'' format, containing all the three colour channels. Each frame is of the size

64 x 64 pixels. The train dataset consists of about 50 videos representing each

class, with the test dataset containing about 15 videos for each class. The dataset

totally has 251 videos for train data and 79 videos for test data.

7.2 RESULTS OBTAINED FROM TRAINING OF THE NEURAL

NETWORK

The neural network is fed with an array of frames as input to the first layer.

The shape of the array is thus (80, 64, 64, 64) which corresponds to (number of

frames, image height, image width, number of filters for convolution). The output

from the neural network is an array with the probabilities of each class, which is

calculated by the softmax activation in the output layer. The trained model is

exported and stored.
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Fig. 7.5 Neural network model along with the number of parameters

Fig. 7.6 Results after each epoch of the training process
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Fig. 7.7 (a) Accuracy vs Number of epochs

Fig. 7.7 (b) Loss vs Number of epochs

The accuracy of the training was about 98% and the loss was about 2%.

Previous works on American Sign Language use 3-Dimensional CNNs

based algorithms or a combination of CNN and RNN architectures in their

algorithms.The accuracy obtained on different datasets by using CNN-RNN based

algorithm which uses VGG-GRU architecture was about 64% and 3D-CNN based

algorithm which uses I3D architecture, was about 90% [2]. The results from

experimenting with our dataset produced accuracy of about 98%, with the

ConvLSTM architecture in our implementation.

Although this dataset is smaller, it shows that the ConvLSTM networks are a

viable approach to this sign language recognition as they learn about the spatial
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and temporal features simultaneously, in contrast to CNN-RNN networks that

extract and learn from the features separately. 3D-CNNs while having more

accuracy than CNN-RNN models, they are still setup to capture spatial features

than temporal features. But the spatial features may have less weight when it

comes to video as the movement is essential. Therefore ConvLSTMs are apt for

this problem.

7.3 RESULTS FROM THE PREDICTIONS USING THE MODEL FOR

IMPLEMENTATION

Real-time predictions are made by storing frames in a buffer, and once 80

frames are attained the resultant array of (80, 64, 64, 3) is passed onto the neural

network model for prediction. The predicted class can be obtained by getting the

element having the maximum value in the softmax probabilities array. This class

prediction is outputted through the speaker, with the class representing the word

being output.

Fig. 7.8 (a). Prediction for “Hello” Fig. 7.8 (b). Prediction for “Yes”

67



Fig. 7.8 (c). Prediction for “Friend”

The output after each prediction is printed on the feed window for

representation. This class prediction is converted into speech using the

Python-Text-To-Speech library and outputted through the speaker connected to the

Raspberry Pi. This process allows the sign language gestures to be converted into

audio signals and thus enables a person carrying the portable device to

communicate intelligibly with everyone.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1 CONCLUSION

The proposed method for sign language recognition and translation is being

developed using the sequential deep learning models with the help of Tensorflow,

OpenCV, and audio conversion with the help of pyttsx3 library. The system was

tested by performing sign language gestures in front of the camera and obtaining

the input for processing by the neural network. The input is collected frame-by-

frame, and they are stored in a buffer. After the collection of input in the required

format, it is passed onto the neural network for making predictions. Once the

prediction is made by the neural network, the predicted class is obtained from the

softmax probabilities. This class is outputted in the form of audio signals through

the speaker connected to the Raspberry Pi. After the word is outputted, the buffer is

cleared to allow the storage of new frames representing the next word. This process

is repeated to allow for translation of sign language in the form of gestures to

speech, word-by-word. The limitations are identified and a future plan of action is

created.

8.2 FUTURE WORK

The real-time processing speed could be improved by using more efficient

algorithms and use of better processors. The method of capturing input could be

varied to obtain much smoother experience in real-time applications and to reduce

the delay after each word is translated.

The dataset created for the project contained a limited number of classes and

a limited amount of data representing each class due to the resource constraints, the

absence of which a larger dataset could be applied in the development process. The
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dataset could be recorded in various environments by different people creating a

diversity within the dataset and also allowing the model to focus only on the

features corresponding to the gesture and not the features of the surrounding or the

person performing the gesture.

A more accurate model could be trained by increasing the ConvLSTM layers

and the number of filters and the dense layer neurons could also be increased, all of

which could be applied on more powerful resources.
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APPENDIX

Source code for collecting of data of a particular class

import cv2

import os

if not os.path.exists('data/train/noaction'):

os.makedirs('data/train/noaction')

if not os.path.exists('data/test/noaction'):

os.makedirs('data/test/noaction')

vid = cv2.VideoCapture(0)

fourcc = cv2.VideoWriter_fourcc(*'MP4V')

flag = 0

frame_count = 0

vid_count = len(os.listdir('data/train/noaction'))

path = 'data/train/noaction/'

while(True):

ret, frame = vid.read()

keyPress = cv2.waitKey(1) & 0xFF

if keyPress == ord('s'):

flag = 1

out = cv2.VideoWriter(path + str(vid_count) + '.mp4', fourcc,

30, (640, 480))
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print("Writing")

elif keyPress == ord('x'):

fla = 0

vid_count = vid_count + 1

if vid_count == 50:

path = 'data/test/hello/'

out.release()

print("Stopping")

elif keyPress == ord('q'):

break

cv2.imshow("Feed", frame)

vid.release()

cv2.destroyAllWindows()

Source code for training of data

import tensorflow as tf

import cv2

import os

import numpy as np

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

classes = ["hello", "yes", "no", "friend", "noaction"]

img_height, img_width = 64, 64

def frame_collection(videoPath):

frames = []

vid = cv2.VideoCapture(videoPath)
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count = 1

while count <= 80:

ret, frame = vid.read()

if ret:

frame = cv2.resize(frame, (img_height, img_width))

frames.append(frame)

prev_frame = frame

else:

frames.append(prev_frame)

count = count + 1

return frames

def dataset_extraction(inputdir):

X = []

Y = []

classes_list = os.listdir(inputdir)

for c in classes_list:

print(c)

files = os.listdir(os.path.join(inputdir, c))

for f in files:

print(f)

frames =

frame_collection(os.path.join(os.path.join(inputdir, c), f))

X.append(frames)

y = [0] * len(classes)

y[classes.index(c)] = 1

Y.append(y)
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X = np.asarray(X)

Y = np.asarray(Y)

return X, Y

train_data, train_class =

dataset_extraction("/content/drive/MyDrive/data/train")

test_data, test_class =

dataset_extraction("/content/drive/MyDrive/data/test")

model = tf.keras.models.Sequential([

tf.keras.layers.ConvLSTM2D(64, (3, 3), return_sequences = True,

padding = "same", data_format = "channels_last", input_shape = (80,

img_height, img_width, 3)),

tf.keras.layers.BatchNormalization(),

tf.keras.layers.ConvLSTM2D(8, (3, 3), return_sequences = False,

padding = "same", data_format = "channels_last"),

tf.keras.layers.BatchNormalization(),

tf.keras.layers.Flatten(),

tf.keras.layers.Dense(128, activation = "relu"),

tf.keras.layers.Dropout(0.3),

tf.keras.layers.Dense(5, activation = "softmax")

])

model.summary()

model.compile(optimizer = 'adam', loss = 'categorical_crossentropy',

metrics = ['accuracy'])
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history = model.fit(

train_data,

train_class,

validation_data = (test_data, test_class),

epochs = 5,

batch_size = 8,

shuffle = True

)

model.save('/content/drive/MyDrive/video_model1.model')

plt.plot(history.history['accuracy'])

plt.plot(history.history['val_accuracy'])

plt.title('model accuracy')

plt.ylabel('accuracy')

plt.xlabel('epoch')

plt.legend(['train', 'test'], loc='upper left')

plt.show()

plt.plot(history.history['loss'])

plt.plot(history.history['val_loss'])

plt.title('model loss')

plt.ylabel('loss')

plt.xlabel('epoch')

plt.legend(['train', 'test'], loc='upper left')

plt.show()

77



Source code for classification of videos

import numpy as np

import cv2

import tensorflow as tf

vid = cv2.VideoCapture(0)

frame_count = 0

flag = 0

frames = []

classes = ["hello", "yes", "no", "friend", "no action"]

prediction = ""

model = tf.keras.models.load_model("video_model.model")

while True:

ret, frameVid = vid.read()

frame = cv2.resize(frameVid, (64, 64))

if frame_count < 80 and flag == 1:

frames.append(frame)

frame_count = frame_count + 1

elif frame_count == 80:

frame_count = 0

print("Done recording")

modelFrames = np.array(frames)

frames = []

modelFrames = modelFrames.reshape((1, 80, 64, 64, 3))

pred = model.predict(modelFrames)

predictionNum = np.argmax(pred[0])

prediction = classes[predictionNum]

print(prediction)
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cv2.putText(frameVid, prediction, (50, 150),

cv2.FONT_HERSHEY_SIMPLEX, 3, (0, 255, 0))

cv2.imshow("Feed", frameVid)

vid.release()

cv2.destroyAllWindows()
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